The aim of this thesis, conducted in collaboration with Azcom Technology, is to design a multi-band analog front-end for 5G NR applications. The purpose of the work is to evaluate the performance of a 5G Radio Unit (RU) developed by Azcom Technology across various frequency bands, to demonstrate its proper operation throughout the sub-7GHz. spectrum. The selected bands are 28 (FDD, uplink: 703 MHz-748 MHz, downlink: 758 MHz-803 MHz), 48 (TDD, 3550 MHz-3700 MHz), 96 (TDD, 5925 MHz-7125 MHz), and 256 (FDD, uplink: 1980 MHz-2010 MHz, downlink: 2170 MHz 2200 MHz); these bands are of particular interest because they have been recently allocated or are widely used. Additionally, an extra path is included to verify the correct operation over the entire FR1 range (410 MHz-7125 MHz) without filtering. The transmission requirement is an output power of \SI{10}{\dBm} in each band, while for reception, the noise figure (NF) must be optimised to clearly distinguish the useful signal from noise. This thesis presents the design architecture of the 2x2 MIMO radio frequency system capable of operating across multiple frequency bands through switchable signal paths, illustrating the design choices, component selection, and simulations performed to verify compliance with the required performance specifications. Subsequently, the power distribution network, selected components, and power consumption are analysed to ensure that the power supply is adequate for the proper operation of the RF components. Finally, the PCB stack-up and component placement strategy are introduced, and the losses due to transmission lines are evaluated, demonstrating that they do not compromise the expected system performance.
L'obiettivo di questa tesi, svolta in collaborazione con Azcom Technology, è di realizzare un front-end analogico multi-banda per applicazioni 5G NR. Il lavoro è finalizzato a esaminare le performance della Radio Unit (RU) 5G sviluppata da Azcom Technology su diverse bande di frequenza, al fine di dimostrarne il corretto funzionamento sull’intero spettro al di sotto dei 7GHz. Le bande scelte sono la 28 (FDD, uplink: 703 MHz-748 MHz, downlink: 758 MHz-803 MHz), 48 (TDD, 3550 MHz-3700 MHz), 96 (TDD, 5925 MHz-7125 MHz), e 256 (FDD, uplink: 1980 MHz-2010 MHz, downlink: 2170 MHz-2200 MHz); queste bande sono di particolare interesse perchè recentemente allocate o di diffuso utilizzo. E' inoltre presente un cammino aggiuntivo per verificare il corretto funzionamento su tutto il range FR1 ((410 MHz-7125 MHz) senza filtraggio. Il requisito di trasmissione è una potenza di uscita di \SI{10}{\dBm}, mentre per la ricezione si richiede di ottimizzare la noise figure (NF) in modo da distinguere chiaramente il segnale utile dal rumore. Il lavoro svolto presenta l'architettura del sistema a radio frequenza 2x2 MIMO, illustrando le scelte progettuali, la selezione dei componenti e le simulazioni effettuate per verificare il rispetto dei requisiti prestazionali richiesti. In seguito, viene analizzata la rete di distribuzione di potenza, i componenti selezionati e i consumi per verificare che l’alimentazione risulti adeguata al corretto funzionamento dei componenti RF. Infine, viene introdotto lo stack-up della PCB e la strategia di piazzamento dei componenti. Inoltre, vengono valutate le perdite dovute alle linee di trasmissione, dimostrando che queste non compromettono le prestazioni previste dal progetto.
Design of a multi-band 700MHz-7GHz analog front-end for 5G NR applications
ZERBINI, CHRISTIAN
2024/2025
Abstract
The aim of this thesis, conducted in collaboration with Azcom Technology, is to design a multi-band analog front-end for 5G NR applications. The purpose of the work is to evaluate the performance of a 5G Radio Unit (RU) developed by Azcom Technology across various frequency bands, to demonstrate its proper operation throughout the sub-7GHz. spectrum. The selected bands are 28 (FDD, uplink: 703 MHz-748 MHz, downlink: 758 MHz-803 MHz), 48 (TDD, 3550 MHz-3700 MHz), 96 (TDD, 5925 MHz-7125 MHz), and 256 (FDD, uplink: 1980 MHz-2010 MHz, downlink: 2170 MHz 2200 MHz); these bands are of particular interest because they have been recently allocated or are widely used. Additionally, an extra path is included to verify the correct operation over the entire FR1 range (410 MHz-7125 MHz) without filtering. The transmission requirement is an output power of \SI{10}{\dBm} in each band, while for reception, the noise figure (NF) must be optimised to clearly distinguish the useful signal from noise. This thesis presents the design architecture of the 2x2 MIMO radio frequency system capable of operating across multiple frequency bands through switchable signal paths, illustrating the design choices, component selection, and simulations performed to verify compliance with the required performance specifications. Subsequently, the power distribution network, selected components, and power consumption are analysed to ensure that the power supply is adequate for the proper operation of the RF components. Finally, the PCB stack-up and component placement strategy are introduced, and the losses due to transmission lines are evaluated, demonstrating that they do not compromise the expected system performance.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Zerbini_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
10.6 MB
Formato
Adobe PDF
|
10.6 MB | Adobe PDF | Visualizza/Apri |
2025_07_Zerbini_executive summary.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
727.54 kB
Formato
Adobe PDF
|
727.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239814