More than 80 percent of the world’s population will live in cities by 2050, and already now large metropolises occupy only 3 percent of the world’s land but consume nearly 70 percent of the resources. Given this background, it becomes clear that enormous changes need to be made in the methods of food production. Moving the places of agricultural production within the city boundaries (Urban Farming) and employing systems that do not exploit the soil but develop inside and on the top of buildings (Building-Integrated Agriculture), using innovative techniques (Led Artificial Lighting, Hydroponics, Aeroponics, Aquaponics) are some of possible viable alternatives. The aim of this research is to address the topic of Building-Integrated Agriculture (BIA) mainly as a design issue, defining spatial implications and social interactions arising from the introduction of these technologies in the urban context. Highly efficient food production in cities has recently become a topic of great interest in various professional and academic disciplines. Indeed, food grown in the city - to be consumed in the city - reduces carbon emissions from transport and water pollution from agriculture, while providing a fresher product for consumers. These possibilities challenge preconceived notions of the purpose of a building and bring new thinking to the historical dichotomy between town and country. Among the possible strategies, the proliferation of buildings that can produce food inside, on the roof or on the façade could prove particularly effective in tackling the food problem in densely populated metropolitan areas, with a view to integrating current traditional systems of urban agriculture with widespread innovative production. Vertical Farms are based on the application of highly specialised indoor cultivation techniques; they are structured as real machine-buildings in which seeds are cultivated in a reduced space compared to traditional fields, allowing vertical development, and reducing the footprint on the soil. The various Vertical Farm configurations are included in the broader definition of Building-Integrated Agriculture (Gould and Caplow 2012), an approach to production based on the idea of placing high performance hydroponic growing systems on and inside buildings, using renewable and local energy sources, to produce high quality vegetables and fruit using 10 to 20 times less land and 5 to 10 times less water than conventional agriculture (Kozai, Niu, and Takagaki 2019). In 1851, Joseph Paxton, a greenhouse builder, designed the Crystal Palace, “the first great building mechanism in the history of architecture; the first in which the integral adoption of iron and glass technology, divorced from its “garden” context, shows entirely utilitarian traits” (Biraghi, 2008). For many historians, the building that marks the beginning of modern architecture is a large, oversized greenhouse, emptied of its typical interior, for which a new use is conceived; in the same way, today’s examples of Building-Integrated Agriculture, ultra-technological and efficient greenhouses, can play the same pioneering role, conjuring up new typologies and unprecedented architectural practices. To this date the subject of Building-Integrated Agriculture has hardly been analysed from an architectural point of view. The examples of BIAs about which information is found online are almost never presented as buildings, but more as patented, registered and reproducible products that can be purchased and equally adaptable to any context. For the design of these types of artifacts not to be reduced to a mere choice of the best technology, it is necessary to conduct extensive research within the architectural discipline to understand the requirements and limitations of these interventions and their design implications. At the methodological level, this research aims to provide a set of tools, each with a precise purpose and function, that can shed light on different aspects of the Building-Integrated Agriculture phenomenon. The glossary (Definitions) The aim of this tool is to identify, through definitions and technical terms, the terms inherent to the world of the Building-Integrated Agriculture. Building-Integrated Agriculture exists in many different forms, and there is currently no consensus on terminology (Delden et al. 2021). For example, the same project can be referred to as Vertical Farm (VF), Plant Factory with Artificial Light (PFAL), Vertical Farm with Artificial Light (VFAL), or fully contained cultivation system. The consideration of words and definitions in this chapter is intended to indicate precisely which terms are most appropriate to define the subject of this research. The map (geographies) In 2010, there were no known vertical farms (Despommier 2020) or other examples of BIAs, but in the following years the number of projects of this kind has increased significantly as advances in various industries have reduced the start-up costs and made them profitable to own and operate. The number of BIAs in the world has certainly grown exponentially in recent years, but it is still of such a scale that a global map of all such realisations is not inconceivable. At present, there is no comprehensive survey or paper that can provide a detailed analysis of the architectural features of Building-Integrated Agriculture, and almost no information on the location and physical consistency of these buildings. Understanding the precise location, size, dimensions, and relationship of a building within its context is essential in architectural research for many reasons; for example, the precise location of a building can provide important contextual information, and the physical environment, including topography, climate and surrounding structures, can influence design considerations and the performance of a building. In this section, which currently includes around 250 projects, there will also be an online map, accessible to all and constantly updated, to provide a fundamental and hitherto non-existent tool for all future researchers wishing to work on this subject. The architecture (space) During the mapping phase, a variety of types and spatial configurations of Building-Integrated Agriculture. It was therefore decided to propose an initial classification to organise these projects, starting with three macro-categories to which all the BIAs identified so far can be assigned (containers, on existing buildings, new construction). Understanding the relevance of these buildings within the architectural discipline necessitates the capability to describe these projects in their architectural form. Consequently, in this section, 30 projects are selected from the 200 included in the map, represented in plan, section, and axonometry (or main elevation). This approach aims to create, for the first time, an “architectural” image of this type of building. Existing Hybrids (quality) Most examples of Building-Integrated Agriculture are typically monofunctional buildings for a number of reasons. They require highly specialized infrastructure tailored to the specific needs of plant cultivation, such as lighting, irrigation systems, and climate control. However, in the last 5 years, especially in Europe, we are witnessing the spread of a new type of BIAs in which the production function is only one of many and is integrated with other activities that may be residence, catering, education, research, and others. Within this research, about thirty buildings with these characteristics were identified, which were given the name Hybrid Farms. A set of around 20 case studies is being selected from them for more in-depth analysis. All the projects collected in this section are already being presented and briefly described in the previous chapter, so this section is focusing on more detailed aspects of these buildings, which are being analysed at several levels through diagrams and drawings. Design Driven Research (possibilities) The final part of the research emphasizes, through the lens of design driven research, the various possibilities for practically implementing Building-Integrated Agriculture. This section encompasses a range of explorations, including experiments using artificial intelligence to generate images from textual prompts, offering a visual and conceptual tool to imagine innovative farming solutions. It also draws on the hands-on experiences conducted with architecture students as part of their design Studio, where they were tasked with developing hybrid farming systems, inside the context of the urban periphery of Milan, where the specific social, economic, and environmental conditions provided a real-world framework for testing new possibilities. Furthermore, this section discusses the insights gained through the mandatory six-month internship, prescribed for the PhD fellowships funded by the PON project. During this period it was possible to engage directly with professionals and stakeholders involved in urban and agricultural planning. The internship allowed for firsthand observation of how advanced vertical farming technologies and cultivation systems could be integrated into broader urban planning strategies. This application was studied in detail in the specific case of Pantelleria, where the integration of these farming solutions into a comprehensive masterplan highlighted the potential for sustainable development and technological innovation in agricultural practices.
Entro il 2050 oltre l'80% della popolazione mondiale vivrà nelle città e già oggi le grandi metropoli occupano solo il 3% della superficie terrestre, ma consumano quasi il 70% delle risorse. In questo contesto, è evidente che occorrono cambiamenti radicali nei metodi di produzione alimentare. Spostare i luoghi di produzione agricola all'interno dei confini cittadini (agricoltura urbana) e impiegare sistemi che non sfruttano il suolo ma si sviluppano all'interno e sulla superficie degli edifici (Building-Integrated Agriculture), utilizzando tecniche innovative (illuminazione artificiale a LED, idroponica, aeroponica, acquaponica) sono alcune delle alternative possibili. Lo scopo di questa ricerca è quello di affrontare il tema della Building-Integrated Agriculture (BIA) principalmente come questione di progettazione, definendo le implicazioni spaziali e le interazioni sociali derivanti dall'introduzione di queste tecnologie nel contesto urbano. La produzione alimentare altamente efficiente nelle città è diventata recentemente un argomento di grande interesse in varie discipline professionali e accademiche. Infatti, il cibo coltivato in città - per essere consumato in città - riduce le emissioni di carbonio dovute al trasporto e l'inquinamento idrico causato dall'agricoltura, fornendo al contempo un prodotto più fresco ai consumatori. Queste possibilità sfidano le nozioni preconcette sullo scopo di un edificio e introducono un nuovo modo di pensare alla storica dicotomia tra città e campagna. Tra le possibili strategie, la proliferazione di edifici in grado di produrre alimenti al loro interno, sul tetto o sulla facciata potrebbe rivelarsi particolarmente efficace per affrontare il problema alimentare nelle aree metropolitane densamente popolate, con l'obiettivo di integrare gli attuali sistemi tradizionali di agricoltura urbana con una produzione innovativa diffusa. Le Vertical Farm si basano sull'applicazione di tecniche di coltivazione indoor altamente specializzate; sono strutturate come veri e propri edifici-macchine in cui i semi vengono coltivati in uno spazio ridotto rispetto ai campi tradizionali, consentendo uno sviluppo verticale e riducendo l'impronta sul suolo. Le varie configurazioni delle Vertical Farm rientrano nella definizione più ampia di agricoltura integrata negli edifici, ossia Building-Integrated Agriculture (Gould e Caplow 2012), un approccio alla produzione basato sull'idea di collocare sistemi di coltivazione idroponica ad alte prestazioni all'interno e all'esterno degli edifici, utilizzando fonti di energia rinnovabili e locali, per produrre frutta e verdura di alta qualità utilizzando da 10 a 20 volte meno terra e da 5 a 10 volte meno acqua rispetto all'agricoltura convenzionale (Kozai, Niu e Takagaki 2019). Nel 1851, Joseph Paxton, costruttore di serre, progettò il Crystal Palace, “il primo grande meccanismo edilizio nella storia dell'architettura; il primo in cui l'adozione integrale della tecnologia del ferro e del vetro, separata dal contesto del ‘giardino’, mostra tratti interamente utilitaristici” (Biraghi, 2008). Per molti storici, l'edificio che segna l'inizio dell'architettura moderna è una grande serra sovradimensionata, svuotata dei suoi interni tipici, per la quale viene concepito un nuovo uso; allo stesso modo, gli esempi odierni di agricoltura integrata negli edifici, serre ultratecnologiche ed efficienti, possono svolgere lo stesso ruolo pionieristico, evocando nuove tipologie e pratiche architettoniche senza precedenti. Ad oggi, il tema dell'agricoltura Integrata negli edifici (Building-Integrated Agriculture) è stato poco analizzato dal punto di vista architettonico. Gli esempi di BIA di cui si trovano informazioni online non sono quasi mai presentati come edifici, ma piuttosto come prodotti brevettati, registrati e riproducibili che possono essere acquistati e adattati a qualsiasi contesto. Affinché la progettazione di questo tipo di artefatti non si riduca a una semplice scelta della tecnologia migliore, è necessario condurre ricerche approfondite nell'ambito della disciplina architettonica per comprendere i requisiti e i limiti di questi interventi e le loro implicazioni progettuali. A livello metodologico, questa ricerca mira a fornire una serie di strumenti, ciascuno con uno scopo e una funzione precisi, in grado di far luce su diversi aspetti del fenomeno dell'agricoltura integrata negli edifici. Il glossario (Definizioni) Lo scopo di questo strumento è quello di identificare, attraverso definizioni e termini tecnici, i termini inerenti al mondo dell'agricoltura integrata negli edifici. L'agricoltura integrata negli edifici esiste in molte forme diverse e attualmente non esiste un consenso sulla terminologia (Delden et al. 2021). Ad esempio, lo stesso progetto può essere denominato Vertical Farm (VF), Plant Factory with Artificial Light (PFAL), Vertical Farm with Artificial Light (VFAL) o sistema di coltivazione completamente chiuso. La considerazione delle parole e delle definizioni in questo capitolo ha lo scopo di indicare con precisione quali termini sono più appropriati per definire l'oggetto della presente ricerca. La mappa (geografie) Nel 2010 non erano note Vertical Farm (Despommier 2020) o altri esempi di BIA, ma negli anni successivi il numero di progetti di questo tipo è aumentato in modo significativo, poiché i progressi in vari settori hanno ridotto i costi di avvio e reso redditizio il loro possesso e la loro gestione. Il numero di BIA nel mondo è certamente cresciuto in modo esponenziale negli ultimi anni, ma è ancora di dimensioni tali che una mappa globale di tutte le realizzazioni non è inconcepibile. Al momento non esiste un'indagine o un documento completo che fornisca un'analisi dettagliata delle caratteristiche architettoniche dell'agricoltura integrata negli edifici, e quasi nessuna informazione sulla posizione e la consistenza fisica di questi edifici. Comprendere l'ubicazione precisa, le dimensioni e la relazione di un edificio nel suo contesto è essenziale nella ricerca architettonica per molte ragioni; ad esempio, l'ubicazione precisa di un edificio può fornire importanti informazioni contestuali e l'ambiente fisico, compresa la topografia, il clima e le strutture circostanti, può influenzare le considerazioni progettuali e le prestazioni di un edificio. In questa sezione, che comprende circa 250 progetti, è disponibile anche una mappa online, accessibile a tutti e costantemente aggiornata, che fornirà uno strumento fondamentale e finora inesistente per tutti i futuri ricercatori che desiderano lavorare su questo argomento. L’Architettura (spazio) Durante la fase di mappatura sono stati individuati diversi tipi e configurazioni spaziali di Building-Integrated Agriculture (BIA). Si è quindi deciso di proporre una classificazione iniziale per organizzare questi progetti, partendo da tre macro-categorie a cui possono essere assegnati tutti i BIA identificati finora (in container, su edifici esistenti, nuove costruzioni). Comprendere la rilevanza di questi edifici all'interno della disciplina architettonica richiede la capacità di descrivere questi progetti nella loro forma architettonica. Di conseguenza, in questa sezione sono stati selezionati 30 progetti tra i 200 inclusi nella mappa, rappresentati in pianta, sezione e assonometria (o elevazione principale). Questo approccio mira a creare, per la prima volta, un'immagine “architettonica” di questo tipo di edificio. Hybrid Farms (qualità) La maggior parte degli esempi di Building-Integrated Agriculture (BIA) si configura tipicamente in edifici monofunzionali per una serie di motivi. Essi richiedono infrastrutture altamente specializzate e adattate alle esigenze specifiche della coltivazione delle piante, come l'illuminazione, i sistemi di irrigazione e il controllo del clima. Tuttavia, negli ultimi 5 anni, soprattutto in Europa, stiamo assistendo alla diffusione di un nuovo tipo di BIA in cui la funzione produttiva è solo una delle tante ed è integrata con altre attività che possono essere la residenza, la ristorazione, l'istruzione, la ricerca e altre ancora. Nell'ambito di questa ricerca sono stati individuati una trentina di edifici con queste caratteristiche, a cui è stato dato il nome di Hybrid Farms. Da questi è stata selezionata una ventina di casi studio per un'analisi più approfondita. Tutti i progetti raccolti in questa sezione sono già stati presentati e brevemente descritti nel capitolo precedente; quindi, questa sezione si concentra su aspetti più dettagliati di questi edifici, che vengono analizzati a diversi livelli attraverso diagrammi e disegni. Design Driven Research (possibilità) La parte finale della ricerca sottolinea, attraverso la lente della ricerca orientata al design, le varie possibilità di implementazione pratica dell'agricoltura integrata negli edifici. Questa sezione comprende una serie di esplorazioni, tra cui esperimenti che utilizzano l'intelligenza artificiale per generare immagini da prompt testuali, offrendo uno strumento visivo e concettuale per immaginare soluzioni agricole innovative. Si attinge anche alle esperienze pratiche condotte con studenti di architettura nell'ambito del loro studio di progettazione, dove sono stati incaricati di sviluppare sistemi agricoli ibridi, nel contesto della periferia urbana di Milano, dove le specifiche condizioni sociali, economiche e ambientali hanno fornito un quadro reale per testare nuove possibilità. Inoltre, questa sezione discute le intuizioni acquisite attraverso il tirocinio obbligatorio di sei mesi, prescritto per le borse di studio di dottorato finanziate dal progetto PON. Durante questo periodo è stato possibile interagire direttamente con professionisti e stakeholder coinvolti nella pianificazione urbana e agricola. Il tirocinio ha permesso di osservare in prima persona come le tecnologie avanzate di Vertical Farm e i sistemi di coltivazione possano essere integrati in strategie di pianificazione urbana più ampie. Questa applicazione è stata studiata in dettaglio nel caso specifico di Pantelleria, dove l'integrazione di queste soluzioni agricole in un piano regolatore globale ha
Feeding cities : the architecture of building-integrated agriculture from vertical farms to rooftop greenhouses
Oppimitti, Filippo
2024/2025
Abstract
More than 80 percent of the world’s population will live in cities by 2050, and already now large metropolises occupy only 3 percent of the world’s land but consume nearly 70 percent of the resources. Given this background, it becomes clear that enormous changes need to be made in the methods of food production. Moving the places of agricultural production within the city boundaries (Urban Farming) and employing systems that do not exploit the soil but develop inside and on the top of buildings (Building-Integrated Agriculture), using innovative techniques (Led Artificial Lighting, Hydroponics, Aeroponics, Aquaponics) are some of possible viable alternatives. The aim of this research is to address the topic of Building-Integrated Agriculture (BIA) mainly as a design issue, defining spatial implications and social interactions arising from the introduction of these technologies in the urban context. Highly efficient food production in cities has recently become a topic of great interest in various professional and academic disciplines. Indeed, food grown in the city - to be consumed in the city - reduces carbon emissions from transport and water pollution from agriculture, while providing a fresher product for consumers. These possibilities challenge preconceived notions of the purpose of a building and bring new thinking to the historical dichotomy between town and country. Among the possible strategies, the proliferation of buildings that can produce food inside, on the roof or on the façade could prove particularly effective in tackling the food problem in densely populated metropolitan areas, with a view to integrating current traditional systems of urban agriculture with widespread innovative production. Vertical Farms are based on the application of highly specialised indoor cultivation techniques; they are structured as real machine-buildings in which seeds are cultivated in a reduced space compared to traditional fields, allowing vertical development, and reducing the footprint on the soil. The various Vertical Farm configurations are included in the broader definition of Building-Integrated Agriculture (Gould and Caplow 2012), an approach to production based on the idea of placing high performance hydroponic growing systems on and inside buildings, using renewable and local energy sources, to produce high quality vegetables and fruit using 10 to 20 times less land and 5 to 10 times less water than conventional agriculture (Kozai, Niu, and Takagaki 2019). In 1851, Joseph Paxton, a greenhouse builder, designed the Crystal Palace, “the first great building mechanism in the history of architecture; the first in which the integral adoption of iron and glass technology, divorced from its “garden” context, shows entirely utilitarian traits” (Biraghi, 2008). For many historians, the building that marks the beginning of modern architecture is a large, oversized greenhouse, emptied of its typical interior, for which a new use is conceived; in the same way, today’s examples of Building-Integrated Agriculture, ultra-technological and efficient greenhouses, can play the same pioneering role, conjuring up new typologies and unprecedented architectural practices. To this date the subject of Building-Integrated Agriculture has hardly been analysed from an architectural point of view. The examples of BIAs about which information is found online are almost never presented as buildings, but more as patented, registered and reproducible products that can be purchased and equally adaptable to any context. For the design of these types of artifacts not to be reduced to a mere choice of the best technology, it is necessary to conduct extensive research within the architectural discipline to understand the requirements and limitations of these interventions and their design implications. At the methodological level, this research aims to provide a set of tools, each with a precise purpose and function, that can shed light on different aspects of the Building-Integrated Agriculture phenomenon. The glossary (Definitions) The aim of this tool is to identify, through definitions and technical terms, the terms inherent to the world of the Building-Integrated Agriculture. Building-Integrated Agriculture exists in many different forms, and there is currently no consensus on terminology (Delden et al. 2021). For example, the same project can be referred to as Vertical Farm (VF), Plant Factory with Artificial Light (PFAL), Vertical Farm with Artificial Light (VFAL), or fully contained cultivation system. The consideration of words and definitions in this chapter is intended to indicate precisely which terms are most appropriate to define the subject of this research. The map (geographies) In 2010, there were no known vertical farms (Despommier 2020) or other examples of BIAs, but in the following years the number of projects of this kind has increased significantly as advances in various industries have reduced the start-up costs and made them profitable to own and operate. The number of BIAs in the world has certainly grown exponentially in recent years, but it is still of such a scale that a global map of all such realisations is not inconceivable. At present, there is no comprehensive survey or paper that can provide a detailed analysis of the architectural features of Building-Integrated Agriculture, and almost no information on the location and physical consistency of these buildings. Understanding the precise location, size, dimensions, and relationship of a building within its context is essential in architectural research for many reasons; for example, the precise location of a building can provide important contextual information, and the physical environment, including topography, climate and surrounding structures, can influence design considerations and the performance of a building. In this section, which currently includes around 250 projects, there will also be an online map, accessible to all and constantly updated, to provide a fundamental and hitherto non-existent tool for all future researchers wishing to work on this subject. The architecture (space) During the mapping phase, a variety of types and spatial configurations of Building-Integrated Agriculture. It was therefore decided to propose an initial classification to organise these projects, starting with three macro-categories to which all the BIAs identified so far can be assigned (containers, on existing buildings, new construction). Understanding the relevance of these buildings within the architectural discipline necessitates the capability to describe these projects in their architectural form. Consequently, in this section, 30 projects are selected from the 200 included in the map, represented in plan, section, and axonometry (or main elevation). This approach aims to create, for the first time, an “architectural” image of this type of building. Existing Hybrids (quality) Most examples of Building-Integrated Agriculture are typically monofunctional buildings for a number of reasons. They require highly specialized infrastructure tailored to the specific needs of plant cultivation, such as lighting, irrigation systems, and climate control. However, in the last 5 years, especially in Europe, we are witnessing the spread of a new type of BIAs in which the production function is only one of many and is integrated with other activities that may be residence, catering, education, research, and others. Within this research, about thirty buildings with these characteristics were identified, which were given the name Hybrid Farms. A set of around 20 case studies is being selected from them for more in-depth analysis. All the projects collected in this section are already being presented and briefly described in the previous chapter, so this section is focusing on more detailed aspects of these buildings, which are being analysed at several levels through diagrams and drawings. Design Driven Research (possibilities) The final part of the research emphasizes, through the lens of design driven research, the various possibilities for practically implementing Building-Integrated Agriculture. This section encompasses a range of explorations, including experiments using artificial intelligence to generate images from textual prompts, offering a visual and conceptual tool to imagine innovative farming solutions. It also draws on the hands-on experiences conducted with architecture students as part of their design Studio, where they were tasked with developing hybrid farming systems, inside the context of the urban periphery of Milan, where the specific social, economic, and environmental conditions provided a real-world framework for testing new possibilities. Furthermore, this section discusses the insights gained through the mandatory six-month internship, prescribed for the PhD fellowships funded by the PON project. During this period it was possible to engage directly with professionals and stakeholders involved in urban and agricultural planning. The internship allowed for firsthand observation of how advanced vertical farming technologies and cultivation systems could be integrated into broader urban planning strategies. This application was studied in detail in the specific case of Pantelleria, where the integration of these farming solutions into a comprehensive masterplan highlighted the potential for sustainable development and technological innovation in agricultural practices.| File | Dimensione | Formato | |
|---|---|---|---|
|
Oppimitti Filippo_Feeding Cities.pdf
non accessibile
Dimensione
304.41 MB
Formato
Adobe PDF
|
304.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239854