Global supply chains are increasingly exposed to complex and prolonged disruptions caused by pandemics, geopolitical tensions, and rapid technological change. These challenges have revealed the limitations of resilience-focused models, which primarily emphasize recovery. This thesis addresses the problem of how supply chains can be designed not only to withstand disruptions but to adapt and evolve over time. It investigates supply chain viability (SCV) as a framework that emphasizes long-term survivability, systemic transformation, and strategic coherence. To explore this question, the thesis adopts a conceptual, theory-building methodology based on a structured literature review. It draws on supply chain management, systems thinking, organizational cybernetics, and digital transformation to construct a unified model of viability. A central contribution of the thesis is the integration of the Viable System Model (VSM)—a cybernetic framework for designing adaptive systems—with SCV logic. This interlink provides a structural and theoretical foundation for governing viable supply chains under uncertainty. Key findings include: (1) a clear distinction between resilience and viability in scope, orientation, and application; (2) a framework of eight viability dimensions, supported by indicators categorized as structural, behavioral, digital, and temporal; and (3) the identification of enabling digital technologies—such as digital twins, AI, and blockchain—that align with and operationalize VSM functions. The thesis advances theoretical understanding by bridging VSM and SCV, and offers practical guidance for managers through viability audits, distributed governance, and business model innovation. It positions the VSM–SCV interlink as a foundational approach for building supply chains capable of surviving and thriving in dynamic environments.
e catene di fornitura globali sono sempre più esposte a interruzioni complesse e prolungate, causate da pandemie, tensioni geopolitiche, cambiamenti climatici e trasformazioni tecnologiche. Queste sfide hanno evidenziato i limiti dei modelli focalizzati sulla resilienza, che si concentrano principalmente sul recupero. Questa tesi affronta il problema di come progettare catene di fornitura in grado non solo di resistere alle interruzioni, ma anche di adattarsi ed evolversi nel tempo. Viene esplorato il concetto di viabilità della catena di fornitura (SCV), inteso come un quadro teorico orientato alla sopravvivenza a lungo termine, alla trasformazione sistemica e alla coerenza strategica. Per rispondere a questa domanda, la tesi adotta una metodologia concettuale e di costruzione teorica, basata su una revisione strutturata della letteratura. Essa integra contributi dal management della supply chain, dal pensiero sistemico, dalla cibernetica organizzativa e dalla trasformazione digitale, con l'obiettivo di costruire un modello unitario di viabilità. Un contributo centrale della tesi è l’integrazione tra il Viable System Model (VSM)—un modello cibernetico per la progettazione di sistemi adattivi—e la logica della SCV. Questo collegamento fornisce una base teorica e strutturale per la gestione delle catene di fornitura in contesti di incertezza. I principali risultati includono: (1) una chiara distinzione tra resilienza e viabilità in termini di ambito, orientamento e applicazione; (2) un framework articolato in otto dimensioni della viabilità, supportato da indicatori categorizzati come strutturali, comportamentali, digitali e temporali; e (3) l’identificazione di tecnologie digitali abilitanti—come digital twins, intelligenza artificiale e blockchain—che supportano e implementano le funzioni del VSM. La tesi contribuisce allo sviluppo teorico della SCV, offrendo al contempo strumenti pratici per i manager, tra cui audit di viabilità, governance distribuita e innovazione del modello di business. L’interconnessione tra VSM e SCV è presentata come un approccio fondante per costruire catene di fornitura capaci di sopravvivere e prosperare in ambienti dinamici.
Supply chain viability: a literature analysis and viable system model perspective
AMER, SALMA MAGED MOHAMED ALI MOHAMED
2024/2025
Abstract
Global supply chains are increasingly exposed to complex and prolonged disruptions caused by pandemics, geopolitical tensions, and rapid technological change. These challenges have revealed the limitations of resilience-focused models, which primarily emphasize recovery. This thesis addresses the problem of how supply chains can be designed not only to withstand disruptions but to adapt and evolve over time. It investigates supply chain viability (SCV) as a framework that emphasizes long-term survivability, systemic transformation, and strategic coherence. To explore this question, the thesis adopts a conceptual, theory-building methodology based on a structured literature review. It draws on supply chain management, systems thinking, organizational cybernetics, and digital transformation to construct a unified model of viability. A central contribution of the thesis is the integration of the Viable System Model (VSM)—a cybernetic framework for designing adaptive systems—with SCV logic. This interlink provides a structural and theoretical foundation for governing viable supply chains under uncertainty. Key findings include: (1) a clear distinction between resilience and viability in scope, orientation, and application; (2) a framework of eight viability dimensions, supported by indicators categorized as structural, behavioral, digital, and temporal; and (3) the identification of enabling digital technologies—such as digital twins, AI, and blockchain—that align with and operationalize VSM functions. The thesis advances theoretical understanding by bridging VSM and SCV, and offers practical guidance for managers through viability audits, distributed governance, and business model innovation. It positions the VSM–SCV interlink as a foundational approach for building supply chains capable of surviving and thriving in dynamic environments.File | Dimensione | Formato | |
---|---|---|---|
2025_7_Amer.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239876