Digital platforms today represent the primary channels for the dissemination of political communication, operating within a context marked by an overwhelming abundance of information that significantly hinders individuals' ability to engage in critical and informed reflection on the content they encounter. Within this scenario, images play a crucial role in shaping and modulating political discourse, exerting a decisive influence on public opinion and its orientations. While the role of iconic imagery has been widely studied, the function of stock images has received limited attention so far. This thesis specifically focuses on the analysis of stock images generated through artificial intelligence within the electoral context. The research aims to explore how such images—despite their standardized and seemingly neutral visual structure—contribute to the construction and dissemination of ideological meanings and narratives, thereby influencing the collective perception of political phenomena. The study is guided by two main research questions: "What visual models can be designed to facilitate the exploration of AI-generated stock images in an electoral context?" and "How can these visual models be systematically documented and later communicated to ensure their replicability by other researchers?". To address these questions, the research adopts a multidimensional methodological approach that integrates both qualitative and computational methods. The 2024 U.S. presidential election has been selected as an emblematic case study to test and apply the proposed methodological approaches. The project culminates in the development of the digital platform AI-Gen Stock Images Exploratory Guide, an artifact that collects, formalizes, and makes accessible the analytical experiments conducted during the research. This platform is conceived as both an operational and methodological tool, aimed at providing practical resources for the critical analysis of AI-generated stock images in electoral contexts and at promoting the replicability of these experiments by other scholars. The thesis’ main contribution lies in the proposal of an open-source methodological tool, designed to facilitate the critical examination of the digital visual landscape and to deepen the understanding of the role of AI-generated stock imagery in the construction of contemporary political narratives.
Le piattaforme digitali rappresentano oggi i principali canali di diffusione della comunicazione politica, inserite in un contesto caratterizzato da un’intensa sovrabbondanza informativa che ostacola significativamente la capacità degli individui di sviluppare una riflessione critica e consapevole sui contenuti veicolati. All’interno di tale scenario, le immagini rivestono un ruolo cruciale nella costruzione e nella modulazione del discorso politico, esercitando un’influenza determinante sulle percezioni e sugli orientamenti dell’opinione pubblica. Sebbene il ruolo delle immagini iconiche sia stato ampiamente indagato, la funzione delle immagini stock ha ricevuto finora un’attenzione limitata. In particolare, questa tesi si focalizza sull’analisi delle immagini stock generate mediante intelligenza artificiale nel contesto elettorale. La ricerca mira a indagare come tali immagini, pur caratterizzate da una struttura visiva standardizzata e apparentemente neutra, contribuiscano alla costruzione e diffusione di significati e narrazioni ideologiche, influenzando la percezione collettiva del fenomeno politico. I due principali interrogativi che orientano questo lavoro sono: “Quali modelli visivi possono essere progettati per agevolare l’esplorazione delle immagini stock generate tramite intelligenza artificiale in un contesto elettorale?” e “In che modo tali modelli visivi possono essere documentati sistematicamente e successivamente comunicati per garantirne la replicabilità da parte di altri ricercatori?”. Al fine di rispondere a tali quesiti, la ricerca adotta un approccio metodologico multidimensionale che integra metodi qualitativi e computazionali. Le elezioni presidenziali statunitensi del 2024 sono state selezionate come caso studio emblematico per testare e applicare gli approcci metodologici sviluppati. Il progetto culmina nella realizzazione della piattaforma digitale AI-Gen Stock Images Exploratory Guide, un artefatto che raccoglie, formalizza e rende accessibili gli esperimenti analitici prodotti nel corso della ricerca. Tale piattaforma è concepita come uno strumento operativo e metodologico, volto a fornire risorse pratiche per l’analisi critica delle immagini stock generate da AI nel contesto elettorale, nonché a promuovere la replicabilità degli esperimenti da parte di altri studiosi. Il contributo principale della tesi consiste nella proposta di uno strumento metodologico open source, finalizzato a facilitare l’esame critico del panorama visivo digitale e ad approfondire il ruolo delle immagini stock AI-generated nella costruzione delle narrazioni politiche contemporanee.
AI-gen stock images exploratory guide : una raccolta di esperimenti design driven che esplora le immagini stock generate dall'IA nelle campagne politiche
Fregnan, Riccardo
2024/2025
Abstract
Digital platforms today represent the primary channels for the dissemination of political communication, operating within a context marked by an overwhelming abundance of information that significantly hinders individuals' ability to engage in critical and informed reflection on the content they encounter. Within this scenario, images play a crucial role in shaping and modulating political discourse, exerting a decisive influence on public opinion and its orientations. While the role of iconic imagery has been widely studied, the function of stock images has received limited attention so far. This thesis specifically focuses on the analysis of stock images generated through artificial intelligence within the electoral context. The research aims to explore how such images—despite their standardized and seemingly neutral visual structure—contribute to the construction and dissemination of ideological meanings and narratives, thereby influencing the collective perception of political phenomena. The study is guided by two main research questions: "What visual models can be designed to facilitate the exploration of AI-generated stock images in an electoral context?" and "How can these visual models be systematically documented and later communicated to ensure their replicability by other researchers?". To address these questions, the research adopts a multidimensional methodological approach that integrates both qualitative and computational methods. The 2024 U.S. presidential election has been selected as an emblematic case study to test and apply the proposed methodological approaches. The project culminates in the development of the digital platform AI-Gen Stock Images Exploratory Guide, an artifact that collects, formalizes, and makes accessible the analytical experiments conducted during the research. This platform is conceived as both an operational and methodological tool, aimed at providing practical resources for the critical analysis of AI-generated stock images in electoral contexts and at promoting the replicability of these experiments by other scholars. The thesis’ main contribution lies in the proposal of an open-source methodological tool, designed to facilitate the critical examination of the digital visual landscape and to deepen the understanding of the role of AI-generated stock imagery in the construction of contemporary political narratives.File | Dimensione | Formato | |
---|---|---|---|
Fregnan_Tesi.pdf
accessibile in internet per tutti
Dimensione
44.82 MB
Formato
Adobe PDF
|
44.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239883