Sub-synchronous vibrations (SSV) in the axial direction can be observed in both large gas turbines for power generation and small automotive turbochargers. Such vibrations, occurring at frequencies lower than the shaft’s rotational speed, can reach significant amplitudes and pose a risk to structural integrity. Axial SSV can be triggered by lateral vibrations, resulting in coupled axial-lateral dynamics usually governed by the hydrodynamic thrust bearing. This component generates nonlinear forces and moments according to the Reynolds equation. This work aims to investigate axial SSV and develops a rotordynamic model for a medium-sized (~100 MW) gas turbine capable of capturing the nonlinear coupling between axial and lateral dynamics. Due to the high computational cost of directly solving the Reynolds model, two approaches are proposed to compute bearing forces and moments: a feed-forward artificial neural network and an interpolator, both trained on datasets generated via offline MATLAB simulations. Time-domain numerical simulations with real oil film forces are also performed and compared to simplified model. The linearized and nonlinear models are compared in terms of accuracy and computational efficiency. From numerical simulations of sinusoidal axial forcing of the unbalanced shaft, nonlinear effects are observed, such as intermodulation frequencies. Axial eigenfrequency depends on the static axial load. At low magnitude static axial load, reduced stiffness and damping cause large axial SSV. Coupling effects induced by the thrust bearing intensify when the collar approaches the bearing sides. The resulting framework provides a foundation for further extensions to account for additional relevant effects beyond the scope of this study.

Le vibrazioni sub-sincrone (SSV) nella direzione assiale si osservano spesso sia nelle grandi turbine a gas per la produzione di energia, sia nei piccoli turbocompressori automobilistici. Tali vibrazioni, che si manifestano a frequenze inferiori rispetto alla velocità di rotazione dell’albero, possono raggiungere ampiezze elevate e compromettere l’integrità strutturale del sistema. Le SSV assiali possono essere innescate da vibrazioni laterali, dando origine a una dinamica accoppiata assiale-laterale, governata dal comportamento del cuscinetto reggispinta idrodinamico, che genera forze e coppie non lineari secondo l’equazione di Reynolds. Questo tesi ha l’obiettivo di analizzare le vibrazioni SSV assiali e sviluppare un modello rotodinamico per una turbina a gas di media potenza (circa 100 MW), capace di rappresentare accuratamente l’accoppiamento non lineare tra le dinamiche assiali e laterali. Considerando l’elevato costo computazionale della soluzione diretta del modello basato sull’equazione di Reynolds, vengono proposte due strategie alternative per il calcolo delle forze e delle coppie generate dal cuscinetto: una rete neurale artificiale di tipo feed-forward e un interpolatore, entrambi addestrati su un insieme di dati ottenuto da simulazioni realizzate separatamente in MATLAB. Si eseguono anche simulazioni numeriche nel dominio del tempo, considerando le reali forze sviluppate dal meato d’olio, per essere confrontate con il modello semplificato. I modelli lineare e non lineare vengono quindi confrontati in termini di accuratezza e prestazioni computazionali. Dalle simulazioni numeriche di forzamento assiale sinusoidale, si osservano effetti non lineari, quali le frequenze di intermodulazione. La frequenza propria assiale dipende dal carico assiale statico. A basso carico assiale statico, rigidezza e smorzamento ridotti causano SSV assiali di ampiezza elevata. L’effetto di accoppiamento indotto dal cuscinetto assiale si intensifica quando la ralla si avvicina ai lati del cuscinetto. Il modello sviluppato costituisce una base solida per sviluppi futuri, finalizzati a includere ulteriori effetti rilevanti non considerati in questo studio.

Nonlinear rotordynamic model of a gas turbine: coupling effects of the thrust bearing on axial vibrations

RE FRASCHINI, ALESSANDRO;PALMISANO, FEDERICO
2024/2025

Abstract

Sub-synchronous vibrations (SSV) in the axial direction can be observed in both large gas turbines for power generation and small automotive turbochargers. Such vibrations, occurring at frequencies lower than the shaft’s rotational speed, can reach significant amplitudes and pose a risk to structural integrity. Axial SSV can be triggered by lateral vibrations, resulting in coupled axial-lateral dynamics usually governed by the hydrodynamic thrust bearing. This component generates nonlinear forces and moments according to the Reynolds equation. This work aims to investigate axial SSV and develops a rotordynamic model for a medium-sized (~100 MW) gas turbine capable of capturing the nonlinear coupling between axial and lateral dynamics. Due to the high computational cost of directly solving the Reynolds model, two approaches are proposed to compute bearing forces and moments: a feed-forward artificial neural network and an interpolator, both trained on datasets generated via offline MATLAB simulations. Time-domain numerical simulations with real oil film forces are also performed and compared to simplified model. The linearized and nonlinear models are compared in terms of accuracy and computational efficiency. From numerical simulations of sinusoidal axial forcing of the unbalanced shaft, nonlinear effects are observed, such as intermodulation frequencies. Axial eigenfrequency depends on the static axial load. At low magnitude static axial load, reduced stiffness and damping cause large axial SSV. Coupling effects induced by the thrust bearing intensify when the collar approaches the bearing sides. The resulting framework provides a foundation for further extensions to account for additional relevant effects beyond the scope of this study.
DASSI, LUDOVICO
ING - Scuola di Ingegneria Industriale e dell'Informazione
22-lug-2025
2024/2025
Le vibrazioni sub-sincrone (SSV) nella direzione assiale si osservano spesso sia nelle grandi turbine a gas per la produzione di energia, sia nei piccoli turbocompressori automobilistici. Tali vibrazioni, che si manifestano a frequenze inferiori rispetto alla velocità di rotazione dell’albero, possono raggiungere ampiezze elevate e compromettere l’integrità strutturale del sistema. Le SSV assiali possono essere innescate da vibrazioni laterali, dando origine a una dinamica accoppiata assiale-laterale, governata dal comportamento del cuscinetto reggispinta idrodinamico, che genera forze e coppie non lineari secondo l’equazione di Reynolds. Questo tesi ha l’obiettivo di analizzare le vibrazioni SSV assiali e sviluppare un modello rotodinamico per una turbina a gas di media potenza (circa 100 MW), capace di rappresentare accuratamente l’accoppiamento non lineare tra le dinamiche assiali e laterali. Considerando l’elevato costo computazionale della soluzione diretta del modello basato sull’equazione di Reynolds, vengono proposte due strategie alternative per il calcolo delle forze e delle coppie generate dal cuscinetto: una rete neurale artificiale di tipo feed-forward e un interpolatore, entrambi addestrati su un insieme di dati ottenuto da simulazioni realizzate separatamente in MATLAB. Si eseguono anche simulazioni numeriche nel dominio del tempo, considerando le reali forze sviluppate dal meato d’olio, per essere confrontate con il modello semplificato. I modelli lineare e non lineare vengono quindi confrontati in termini di accuratezza e prestazioni computazionali. Dalle simulazioni numeriche di forzamento assiale sinusoidale, si osservano effetti non lineari, quali le frequenze di intermodulazione. La frequenza propria assiale dipende dal carico assiale statico. A basso carico assiale statico, rigidezza e smorzamento ridotti causano SSV assiali di ampiezza elevata. L’effetto di accoppiamento indotto dal cuscinetto assiale si intensifica quando la ralla si avvicina ai lati del cuscinetto. Il modello sviluppato costituisce una base solida per sviluppi futuri, finalizzati a includere ulteriori effetti rilevanti non considerati in questo studio.
File allegati
File Dimensione Formato  
2025_07_Palmisano_Re_Fraschini.pdf

accessibile in internet per tutti

Descrizione: Tesi
Dimensione 13.75 MB
Formato Adobe PDF
13.75 MB Adobe PDF Visualizza/Apri
2025_07_Palmisano_Re_Fraschini_ExecutiveSummary.pdf

accessibile in internet per tutti

Descrizione: Executive Summary
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/239888