With the advancement of autonomous systems and the increasing operational complexity in airports, the automated management of ground maneuvers represents a current and relevant challenge. The problem involves nonlinear, over-actuated dynamics, subject to variable and non-ideal conditions. This Thesis develops a complete control system for the autonomous management of the longitudinal and lateral dynamics of an aircraft during ground operations, with the goal of improving operational safety and reducing pilot workload. Two complementary models are used for the design and validation of the controllers: a high-fidelity multibody simulator, validated using experimental data provided by the industrial partner, and a reduced analytical model. The longitudinal system implements a cruise control logic with reference generation based on the path curvature and the landing phase. For lateral dynamics, several single-input control architectures are developed and implemented, in which the controllers regulate lateral deviation and yaw rate. These are arranged both in parallel and in cascade to improve decoupling between control actions. The system is then extended to a multivariable formulation. A MIMO state-space dynamic model is identified and used for the synthesis of an LQI controller and a fixed-structure H-infinity controller. All controllers are tested under non-ideal conditions to assess their robustness and adaptability. Finally, an obstacle avoidance problem is addressed in simplified scenarios with static and known obstacles, by employing an integral sliding mode controller, selected for its higher precision in tracking the desired trajectory. Simulation results confirm the effectiveness of the proposed approach across various representative scenarios. Among the most significant results, an average lateral error of 20 cm was achieved during taxiing, a runway centerline capture time of 11 s was recorded when starting from a 20 m lateral offset, and a maximum lateral deviation of about 50 cm was observed during obstacle avoidance.
Con l’avanzare dei sistemi autonomi e l’aumento della complessità operativa negli aeroporti, la gestione automatizzata delle manovre a terra rappresenta una sfida attuale e rilevante. Il problema coinvolge dinamiche non lineari e un sistema con attuazione ridondante, soggetti a condizioni variabili e non ideali. Questa Tesi sviluppa un sistema di controllo completo per la gestione autonoma della dinamica longitudinale e laterale di un velivolo durante le operazioni a terra, con l’obiettivo di migliorare la sicurezza operativa e ridurre il carico sul pilota. Per la progettazione e validazione dei controllori sono utilizzati due modelli complementari: un simulatore multibody ad alta fedeltà, validato con dati sperimentali forniti dal partner industriale, e un modello analitico ridotto. Il sistema longitudinale implementa una logica di cruise control con generazione del riferimento basata sulla curvatura del percorso e sulla fase di atterraggio. Per la dinamica laterale vengono sviluppate e implementate diverse architetture di controllo a singolo input, in cui i controllori regolano la deviazione laterale e la velocità di imbardata e sono organizzati sia in parallelo che in cascata per migliorare il disaccoppiamento tra le azioni di controllo. Il sistema viene successivamente esteso a una formulazione multivariabile. Un modello dinamico MIMO state-space viene identificato e utilizzato per la sintesi di un controllore LQI e di un controllore H-infinito a struttura fissa. Tutti i controllori sono testati in condizioni non ideali per valutarne la robustezza e l’adattabilità. Infine, viene affrontato un problema di obstacle avoidance in scenari semplificati con ostacoli statici e noti, tramite l'impiego di un controllore sliding mode integrale, scelto per la sua maggiore precisione nell'inseguimento della traiettoria desiderata. I risultati in simulazione confermano l’efficacia dell’approccio proposto in diversi scenari rappresentativi. Tra i risultati più significativi si registrano un errore laterale medio di 20 cm durante il taxiing, tempo di cattura della centerline di 11 s a partire da uno scostamento di 20 m, e un errore massimo di circa 50 cm in fase di avoidance.
Advanced multivariable control for autonomous aircraft ground maneuvering
Del Borrello, Antonio
2024/2025
Abstract
With the advancement of autonomous systems and the increasing operational complexity in airports, the automated management of ground maneuvers represents a current and relevant challenge. The problem involves nonlinear, over-actuated dynamics, subject to variable and non-ideal conditions. This Thesis develops a complete control system for the autonomous management of the longitudinal and lateral dynamics of an aircraft during ground operations, with the goal of improving operational safety and reducing pilot workload. Two complementary models are used for the design and validation of the controllers: a high-fidelity multibody simulator, validated using experimental data provided by the industrial partner, and a reduced analytical model. The longitudinal system implements a cruise control logic with reference generation based on the path curvature and the landing phase. For lateral dynamics, several single-input control architectures are developed and implemented, in which the controllers regulate lateral deviation and yaw rate. These are arranged both in parallel and in cascade to improve decoupling between control actions. The system is then extended to a multivariable formulation. A MIMO state-space dynamic model is identified and used for the synthesis of an LQI controller and a fixed-structure H-infinity controller. All controllers are tested under non-ideal conditions to assess their robustness and adaptability. Finally, an obstacle avoidance problem is addressed in simplified scenarios with static and known obstacles, by employing an integral sliding mode controller, selected for its higher precision in tracking the desired trajectory. Simulation results confirm the effectiveness of the proposed approach across various representative scenarios. Among the most significant results, an average lateral error of 20 cm was achieved during taxiing, a runway centerline capture time of 11 s was recorded when starting from a 20 m lateral offset, and a maximum lateral deviation of about 50 cm was observed during obstacle avoidance.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Del_Borrello_Tesi.pdf
non accessibile
Descrizione: Thesis
Dimensione
34.47 MB
Formato
Adobe PDF
|
34.47 MB | Adobe PDF | Visualizza/Apri |
2025_07_Del_Borrello_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239911