This thesis explores advanced methodologies for pricing and hedging European options in the presence of transaction costs and both temporary and permanent market impact. The motivation stems from the inadequacy and the limitations of classical models, such as Black-Scholes and Bachelier, which assume frictionless markets, perfect liquidity and costless trading, thus enabling perfect replication. Hence, this work develops and compares modern frameworks that incorporate illiquidity effects and trading frictions. A central contribution is the implementation of the general model developed by Guéant and Pu[43], which addresses the financial problem particularly in case of large nominal exposures or illiquid underlying assets. In such contexts, perfect hedging becomes unfeasible and a trade-off emerges between minimizing hedging errors and controlling execution costs, which is solved through a stochastic optimal control framework, under an indifference pricing approach. The thesis introduces a tree-based numerical method, based on backward induction, enabling the computation of optimal control trading strategies along a recombining stock price tree. Comparative analysis with the Bachelier delta hedge highlights the advantages of the proposed strategy under realistic frictions. Particular emphasis is placed on analyzing the distinction of different contract settlement mechanisms, namely physical delivery versus cash settlement, highlighting their respective implications for hedging performance and pricing outcome. Numerical simulations confirm the robustness of the proposed tree-based approach, demonstrating stable performance even under adverse market conditions. To further validate the model’s flexibility, the pricing and optimal hedging of a European collar option, a structured product with a continuous but non-smooth payoff, are considered. The collar’s non-linearities and kinks serve as a stringent stress test, highlighting the model’s capacity to handle complex payoff structures and outperform conventional methods. The findings underscore the necessity of accounting for market frictions in option pricing and offer actionable insights for institutional investors.
Questa tesi esplora metodologie avanzate per la valutazione e la copertura di opzioni europee in presenza di costi di transazione e di impatto di mercato, sia temporaneo sia permanente. La motivazione nasce dall’inadeguatezza dei modelli classici, come Black-Scholes e Bachelier, che presuppongono mercati privi di attriti, liquidità perfetta e assenza di costi di esecuzione, consentendo così una replicazione perfetta. Indi per cui, la presente sviluppa e confronta approcci moderni che incorporano effetti di illiquidità e frizioni di mercato. Un contributo centrale è rappresentato dall’implementazione del modello generale sviluppato da Guéant e Pu (2017)[43], che affronta il problema finanziario in particolare in presenza di esposizioni nominali elevate o di sottostanti illiquidi. In tali contesti, una copertura perfetta diventa irrealizzabile e si configura un trade-off tra la minimizzazione degli errori di hedging e dei costi di esecuzione, risolto attraverso controllo ottimo stocastico, tramite pricing per indifferenza. La tesi introduce un metodo numerico ad albero ricombinante, che, tramite induzione all’indietro, consente di calcolare strategie di trading ottimali. L’analisi comparativa con il delta di Bachelier evidenzia i vantaggi della strategia proposta in presenza di frizioni. Particolare attenzione viene dedicata all’analisi delle differenze tra i meccanismi contrattuali di liquidazione, ossia consegna fisica contro regolamento in cash, mettendone in luce le rispettive implicazioni in termini di performance. Le simulazioni numeriche confermano la robustezza dell'approccio proposto, dimostrando prestazioni stabili anche in condizioni di mercato avverse. Per validare ulteriormente la flessibilità del modello, vengono analizzati pricing ed hedging di una Opzione Collar Europea. Le non linearità e i punti angolosi del collar rappresentano un rigoroso stress test, mettendo in evidenza la capacità del modello di gestire strutture di payoff complesse e di superare i metodi convenzionali. I risultati evidenziano la necessità di incorporare le frizioni di mercato nei modelli di valutazione delle opzioni e offrono spunti pratici per investitori istituzionali.
Option hedging with execution costs and market impact
BIAGI, ELLEN
2024/2025
Abstract
This thesis explores advanced methodologies for pricing and hedging European options in the presence of transaction costs and both temporary and permanent market impact. The motivation stems from the inadequacy and the limitations of classical models, such as Black-Scholes and Bachelier, which assume frictionless markets, perfect liquidity and costless trading, thus enabling perfect replication. Hence, this work develops and compares modern frameworks that incorporate illiquidity effects and trading frictions. A central contribution is the implementation of the general model developed by Guéant and Pu[43], which addresses the financial problem particularly in case of large nominal exposures or illiquid underlying assets. In such contexts, perfect hedging becomes unfeasible and a trade-off emerges between minimizing hedging errors and controlling execution costs, which is solved through a stochastic optimal control framework, under an indifference pricing approach. The thesis introduces a tree-based numerical method, based on backward induction, enabling the computation of optimal control trading strategies along a recombining stock price tree. Comparative analysis with the Bachelier delta hedge highlights the advantages of the proposed strategy under realistic frictions. Particular emphasis is placed on analyzing the distinction of different contract settlement mechanisms, namely physical delivery versus cash settlement, highlighting their respective implications for hedging performance and pricing outcome. Numerical simulations confirm the robustness of the proposed tree-based approach, demonstrating stable performance even under adverse market conditions. To further validate the model’s flexibility, the pricing and optimal hedging of a European collar option, a structured product with a continuous but non-smooth payoff, are considered. The collar’s non-linearities and kinks serve as a stringent stress test, highlighting the model’s capacity to handle complex payoff structures and outperform conventional methods. The findings underscore the necessity of accounting for market frictions in option pricing and offer actionable insights for institutional investors.File | Dimensione | Formato | |
---|---|---|---|
2025_07_BIAGI_Executive_Summary.pdf
accessibile in internet per tutti a partire dal 24/06/2026
Descrizione: Executive Summary
Dimensione
674.31 kB
Formato
Adobe PDF
|
674.31 kB | Adobe PDF | Visualizza/Apri |
2025_07_BIAGI_Thesis.pdf
solo utenti autorizzati a partire dal 24/06/2026
Descrizione: Thesis
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239913