This thesis focuses on the investigation of skidding behaviour in a single-row deep groove ball bearing when subjected to radial loads, utilizing various bearing dynamics models. This type of bearing serves as a support component in electric machines, including traction motors. The radial load from the motor shaft generates significant normal and frictional forces between the inner and outer races, the rolling elements, and the cage. The dynamic interplay among these components, influenced by friction and contact forces, leads to skidding in the bearing. This research examines the impact of radial load on both bearing skidding and the dynamics of the cage. To achieve this, mathematical equations that calculate the contact and friction forces acting on the rolling elements and the cage/race, along with dynamic equilibrium equations for both the cage and the rolling elements, as developed by various researchers, have been employed. The study also emphasizes the distinctions arising from these different methodologies. Furthermore, the dynamics of the cage are analysed by graphing the contact forces, orbital velocities, and slip velocities of both the cage and rolling elements over time.
Questa tesi si concentra sullo studio del comportamento di slittamento in un cuscinetto radiale a sfere a gola profonda singola sottoposto a carichi radiali, utilizzando diversi modelli di dinamica dei cuscinetti. Questo tipo di cuscinetto funge da componente di supporto nelle macchine elettriche, inclusi i motori di trazione. Il carico radiale generato dall'albero motore genera significative forze normali e di attrito tra le piste interna ed esterna, i corpi volventi e la gabbia. L'interazione dinamica tra questi componenti, influenzata dalle forze di attrito e di contatto, porta allo slittamento del cuscinetto. Questa ricerca esamina l'impatto del carico radiale sia lo slittamento del cuscinetto sia la dinamica della gabbia. A tal fine, sono state utilizzate equazioni matematiche che calcolano le forze di contatto e di attrito agenti sui corpi volventi e sul sistema gabbia/pista, insieme a equazioni di equilibrio dinamico sia per la gabbia che per i corpi volventi, sviluppate da diversi ricercatori. Lo studio sottolinea anche le distinzioni derivanti da queste diverse metodologie. Inoltre, la dinamica della gabbia viene analizzata rappresentando graficamente le forze di contatto, le velocità orbitali e le velocità di slittamento sia della gabbia che dei corpi volventi nel tempo.
Skidding in deep groove ball bearings
Dastgir, Junaid
2024/2025
Abstract
This thesis focuses on the investigation of skidding behaviour in a single-row deep groove ball bearing when subjected to radial loads, utilizing various bearing dynamics models. This type of bearing serves as a support component in electric machines, including traction motors. The radial load from the motor shaft generates significant normal and frictional forces between the inner and outer races, the rolling elements, and the cage. The dynamic interplay among these components, influenced by friction and contact forces, leads to skidding in the bearing. This research examines the impact of radial load on both bearing skidding and the dynamics of the cage. To achieve this, mathematical equations that calculate the contact and friction forces acting on the rolling elements and the cage/race, along with dynamic equilibrium equations for both the cage and the rolling elements, as developed by various researchers, have been employed. The study also emphasizes the distinctions arising from these different methodologies. Furthermore, the dynamics of the cage are analysed by graphing the contact forces, orbital velocities, and slip velocities of both the cage and rolling elements over time.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Dastgir_Thesis_01.pdf
non accessibile
Descrizione: thesis text
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Dastgir_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary text
Dimensione
711.21 kB
Formato
Adobe PDF
|
711.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239928