This master’s thesis focuses on the characterization of agricultural tire behavior through experimental data acquired from two real tractors operating under representative conditions. Unlike road vehicles, where the tire–road interaction is extensively modeled, the agricultural domain involves deformable soils and highly variable scenarios, making tire modeling an open and challenging topic. Nonetheless, accurate characterization is important for the development of predictive models in precision agriculture, enabling the optimization of operations to improve productivity and reduce fuel consumption and emissions in a consistent and replicable way. The study was conducted on two agricultural vehicles, referred to as Vehicle 1 and Vehicle 2. Vehicle 1 was tested on both asphalt and agricultural soil, performing acceleration, braking, coast-down, and steering pad maneuvers, in both 2WD and 4WD configurations, with and without front ballast. The onboard sensors included IMU, GPS, an optical speed sensor, wheel encoders, and potentiometers. Due to the absence of direct contact force measurements, an indirect estimation method was developed based on rigid-body dynamics, dynamic equilibrium, and simplified multibody modeling approaches, combined with assumptions on axle kinematics and powertrain behavior. Vehicle 2, instead, was tested in longitudinal maneuvers (including ploughing) and was equipped with dynamometric hubs on all wheels. This setup allowed a direct comparison with the forces estimated through the indirect method and enabled the evaluation of parameters otherwise unmeasurable, such as the dynamic position of the center of gravity during implement operation and rolling resistance without relying on coast-down tests. For both vehicles, slip ratios and normalized forces were analyzed to extract characteristic tire curves. The results were used to identify the parameters of the Pacejka Magic Formula, in both longitudinal and (for Vehicle 1 only) lateral directions. The fitted models were then implemented into standardized .tir files for real-time numerical simulations. In the final phase, virtual implementation was carried out within a real-time vehicle simulation environment, to compare the modeled and experimental behaviors, confirming the consistency and effectiveness of the developed methodology.
La presente tesi di laurea magistrale si concentra sulla caratterizzazione di pneumatici agricoli attraverso dati sperimentali acquisiti da due trattori reali operanti in condizioni tipiche. A differenza dei veicoli stradali, per i quali l’interazione pneumatico–asfalto è ampiamente definita, il contesto agricolo coinvolge suoli deformabili e scenari variabili, rendendo la modellazione degli pneumatici un tema aperto e complesso. Una caratterizzazione accurata risulta tuttavia fondamentale per lo sviluppo di modelli predittivi nell’ambito dell’agricoltura di precisione, al fine di ottimizzare le operazioni, migliorare la produttività e ridurre consumi ed emissioni. Lo studio è stato condotto su due trattori agricoli, indicati come Veicolo 1 e Veicolo 2. Il Veicolo 1 è stato testato sia su asfalto che su terreno, eseguendo manovre di accelerazione, frenata, coast-down e steering pad, in trazione posteriore e integrale, con e senza zavorra anteriore. I sensori installati a bordo includevano IMU, GPS, sensore ottico di velocità, encoder e potenziometri. In assenza di misure dirette delle forze di contatto, è stato sviluppato un metodo di stima indiretta basato sull’equilibrio dinamico, la dinamica del corpo rigido e un modello semplificato multi-body, integrato con ipotesi cinematiche sugli assi e sul comportamento della trasmissione. Il Veicolo 2 è stato invece testato in manovre longitudinali (inclusa l’aratura) ed è stato dotato di mozzi dinamometrici su tutte le ruote. Questa configurazione ha consentito un confronto diretto con le forze stimate in modo indiretto e ha permesso la valutazione di parametri altrimenti non accessibili, come la posizione dinamica del baricentro durante l’uso dell’aratro e la resistenza al rotolamento senza ricorrere a test di coast-down. Per entrambi i veicoli, sono stati analizzati i rapporti di slittamento e le forze normalizzate per ottenere le curve caratteristiche degli pneumatici. I risultati ottenuti sono stati utilizzati per identificare i parametri del modello di Pacejka, sia in direzione longitudinale che (solo per il Veicolo 1) laterale. I modelli ottenuti sono stati poi implementati in file .tir standardizzati, compatibili con ambienti di simulazione numerica in tempo reale. Nella fase finale, è stata effettuata una implementazione virtuale all’interno di un ambiente di simulazione numerico in tempo reale, confrontando il comportamento modellato con quello sperimentale e confermando l’efficacia e la coerenza del metodo sviluppato.
Experimental characterization of agricultural tires and verification of a full tractor model on soft and rigid terrains
Di Florio, Achille
2024/2025
Abstract
This master’s thesis focuses on the characterization of agricultural tire behavior through experimental data acquired from two real tractors operating under representative conditions. Unlike road vehicles, where the tire–road interaction is extensively modeled, the agricultural domain involves deformable soils and highly variable scenarios, making tire modeling an open and challenging topic. Nonetheless, accurate characterization is important for the development of predictive models in precision agriculture, enabling the optimization of operations to improve productivity and reduce fuel consumption and emissions in a consistent and replicable way. The study was conducted on two agricultural vehicles, referred to as Vehicle 1 and Vehicle 2. Vehicle 1 was tested on both asphalt and agricultural soil, performing acceleration, braking, coast-down, and steering pad maneuvers, in both 2WD and 4WD configurations, with and without front ballast. The onboard sensors included IMU, GPS, an optical speed sensor, wheel encoders, and potentiometers. Due to the absence of direct contact force measurements, an indirect estimation method was developed based on rigid-body dynamics, dynamic equilibrium, and simplified multibody modeling approaches, combined with assumptions on axle kinematics and powertrain behavior. Vehicle 2, instead, was tested in longitudinal maneuvers (including ploughing) and was equipped with dynamometric hubs on all wheels. This setup allowed a direct comparison with the forces estimated through the indirect method and enabled the evaluation of parameters otherwise unmeasurable, such as the dynamic position of the center of gravity during implement operation and rolling resistance without relying on coast-down tests. For both vehicles, slip ratios and normalized forces were analyzed to extract characteristic tire curves. The results were used to identify the parameters of the Pacejka Magic Formula, in both longitudinal and (for Vehicle 1 only) lateral directions. The fitted models were then implemented into standardized .tir files for real-time numerical simulations. In the final phase, virtual implementation was carried out within a real-time vehicle simulation environment, to compare the modeled and experimental behaviors, confirming the consistency and effectiveness of the developed methodology.| File | Dimensione | Formato | |
|---|---|---|---|
|
Achille_Di_Florio_Executive_Summary.pdf
solo utenti autorizzati a partire dal 01/07/2028
Descrizione: Executive Summary of the MSc Thesis
Dimensione
1.69 MB
Formato
Adobe PDF
|
1.69 MB | Adobe PDF | Visualizza/Apri |
|
Achille_Di_Florio_Experimental_Characterization_and_Modelling_of_Agricultural_Tires_on_Soft_and_Rigid_Terrains.pdf
solo utenti autorizzati a partire dal 01/07/2028
Descrizione: MSc Thesis by Achille Di Florio in Mechanical Engineering
Dimensione
5.96 MB
Formato
Adobe PDF
|
5.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239937