In this work, we develop an empirical and theoretical framework for Intraband Valence Auger recombination spectromicroscopy under electron impact in a controlled Ultra-high vacuum environment. We formulated the theoretical model based on Fermi’s Golden Rule and Perturbation theory. We also introduced an approximation based on Gaussian-type orbitals (GTOs) with narrow Gaussian envelopes to estimate the matrix element of the intraorbital Auger in the short range. By feeding the model with ab initio Valence Band Density of State (VB DOS) inputs, we develop a semi-quantitative model that captures the spectral features of the process. We also demonstrated that the negative second derivative and first derivative of the low-energy secondary electron spectra (<20\ eV) can be used for VB DOS Mapping at low Primary beam energies. We also showed that the subtraction of the negative second derivative or the first derivative of the low-energy secondary electron spectra taken at two different primary beam energies can directly map the Auger-driven VB DOS in secondary-electron emission spectroscopy (SEES). In the experiment part, using an ultra-high vacuum scanning Auger microscope (SAM) equipped with a custom-modified cylindrical mirror analyzer (CMA), we recorded low-energy SE spectra from highly oriented pyrolytic graphite (HOPG) and Tungsten. To validate the feasibility of detecting the Intraband Valence Auger recombination signal, we first adapted our SAM for low-energy electron spectroscopy by using a pre-accelerating entrance optics for the CMA. Second, we amorphized the surface of the Tungsten sample, suppressing any possible contribution from surface resonance states. Then, using the difference of the negative second derivative of the normalized SE signal acquired at PEs of 0.5 and 1 keV, we found an agreement between the model and the experiment. Furthermore, to assess the role of electron-induced surface contamination on the experimental results, we performed the same experiment using different doses. The results reveal that the Bulk Auger-driven VB DOS can be recorded even at higher doses when the initial surface is clean. The results also showed the effectiveness of the differential approach in canceling the contribution of the SE cascade background and the distortion caused by the entrance optics. Our results also confirm that SEES in SEM can probe VB electronic states with nanometer-scale lateral resolution, opening new avenues for in situ characterization of complex materials and devices under realistic operating conditions.
In questo lavoro sviluppiamo un quadro empirico e teorico per la spettromicroscopia della ricombinazione Auger intrabanda di valenza indotta da impatto elettronico in un ambiente a ultrialto vuoto controllato. Abbiamo formulato il modello teorico basandoci sulla regola d’oro di Fermi e sulla teoria delle perturbazioni, e introdotto un’approssimazione con orbitali gaussiani (GTO) a inviluppo stretto per stimare l’elemento di matrice dell’Auger intra-orbitale a breve raggio. Alimentando il modello con dati ab initio della densità di stati della banda di valenza (VB DOS), abbiamo ottenuto un modello semiquantitativo in grado di riprodurre le caratteristiche spettrali osservate. Abbiamo inoltre dimostrato che la derivata seconda negativa e la derivata prima degli spettri di elettroni secondari a bassa energia (< 20 eV) possono essere impiegate per la mappatura della VB DOS a basse energie di fascio primario, e che la sottrazione delle derivate di spettri acquisiti a due diverse energie (0,5 e 1 keV) mappa direttamente la VB DOS indotta dal processo Auger nella spettroscopia di emissione di elettroni secondari (SEES). Dal lato sperimentale, con un microscopio Auger in UHV dotato di analizzatore a specchio cilindrico (CMA) customizzato e ottiche di ingresso pre-acceleranti, abbiamo registrato spettri SE a bassa energia su grafite pirolitica altamente orientata (HOPG) e su tungsteno. Per verificare la rilevazione del segnale di ricombinazione Auger intrabanda di valenza, abbiamo innanzitutto adattato il SAM alla spettroscopia di elettroni a bassa energia; in secondo luogo, abbiamo amorfizzato la superficie del tungsteno per escludere contributi da stati di risonanza superficiale; infine, analizzando la differenza della derivata seconda negativa normalizzata tra spettri acquisiti a 0,5 e 1 keV, abbiamo riscontrato un ottimo accordo con il modello. Variando la dose di irraggiamento, abbiamo inoltre dimostrato che la VB DOS di bulk, guidata da Auger, resta misurabile anche a dosi elevate su superfici inizialmente pulite, e che l’approccio differenziale elimina efficacemente il contributo del fondo a cascata e le distorsioni ottiche. Questi risultati confermano che la SEES in SEM può sondare gli stati elettronici della banda di valenza con risoluzione laterale nanometrica, aprendo nuove prospettive per la caratterizzazione in situ di materiali e dispositivi complessi in condizioni operative realistiche.
Low-voltage, secondary electron emission spectromicroscopy in a controlled ultra-high vacuum environment
Kosari Mehr, Abbas
2024/2025
Abstract
In this work, we develop an empirical and theoretical framework for Intraband Valence Auger recombination spectromicroscopy under electron impact in a controlled Ultra-high vacuum environment. We formulated the theoretical model based on Fermi’s Golden Rule and Perturbation theory. We also introduced an approximation based on Gaussian-type orbitals (GTOs) with narrow Gaussian envelopes to estimate the matrix element of the intraorbital Auger in the short range. By feeding the model with ab initio Valence Band Density of State (VB DOS) inputs, we develop a semi-quantitative model that captures the spectral features of the process. We also demonstrated that the negative second derivative and first derivative of the low-energy secondary electron spectra (<20\ eV) can be used for VB DOS Mapping at low Primary beam energies. We also showed that the subtraction of the negative second derivative or the first derivative of the low-energy secondary electron spectra taken at two different primary beam energies can directly map the Auger-driven VB DOS in secondary-electron emission spectroscopy (SEES). In the experiment part, using an ultra-high vacuum scanning Auger microscope (SAM) equipped with a custom-modified cylindrical mirror analyzer (CMA), we recorded low-energy SE spectra from highly oriented pyrolytic graphite (HOPG) and Tungsten. To validate the feasibility of detecting the Intraband Valence Auger recombination signal, we first adapted our SAM for low-energy electron spectroscopy by using a pre-accelerating entrance optics for the CMA. Second, we amorphized the surface of the Tungsten sample, suppressing any possible contribution from surface resonance states. Then, using the difference of the negative second derivative of the normalized SE signal acquired at PEs of 0.5 and 1 keV, we found an agreement between the model and the experiment. Furthermore, to assess the role of electron-induced surface contamination on the experimental results, we performed the same experiment using different doses. The results reveal that the Bulk Auger-driven VB DOS can be recorded even at higher doses when the initial surface is clean. The results also showed the effectiveness of the differential approach in canceling the contribution of the SE cascade background and the distortion caused by the entrance optics. Our results also confirm that SEES in SEM can probe VB electronic states with nanometer-scale lateral resolution, opening new avenues for in situ characterization of complex materials and devices under realistic operating conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_AbbasKosariMehr.pdf
non accessibile
Descrizione: Thesis manuscript
Dimensione
5.63 MB
Formato
Adobe PDF
|
5.63 MB | Adobe PDF | Visualizza/Apri |
|
2025.07.06_10.32_Thesis_AKM_AT.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Revised thesis
Dimensione
6.44 MB
Formato
Adobe PDF
|
6.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239948