In recent decades, interest in tall and mid-rise wood buildings has grown significantly, as they represent a possible response to the growing demand for housing and the need to promote more sustainable construction. These types of building systems bring new design challenges in various areas, including the analysis of their dynamic behaviour. Tall timber buildings are characterized by high slenderness and lower mass and elastic modulus than conventional building materials (such as steel and concrete), thus being generally more sensitive to vibration, and potentially less effective in ensuring adequate levels of comfort for occupants. In addition, wood is a biological material whose properties are highly sensitive to environmental parameters such as moisture content, temperature and relative humidity with consequent effects on the dynamic behaviour of the structure. Therefore, it becomes increasingly important to develop effective tools for analysing the dynamic behaviour of wood buildings through experimental tests and finite element numerical models. This thesis examines the case of the multi-story building Hus 37, constructed with Light Timber Frame system and located in Varberg, Sweden. The objective of the thesis is to develop and calibrate a finite element model (FEM) capable of describing the dynamic response of the building, using simplified representation methods that are easily implemented in commercial software. Finally, the developed models are compared with experimental data obtained through Operational Modal Analysis (OMA) tests to evaluate their effectiveness in simulating real building behaviour. In this work, six simplified FEM models (M1.1, M1.2, M2.1, M2.2, M3.1 and M3.2) were developed: models M1.1, M1.2, M2.1 and M2.2 are based on a simplified representation of walls and floors, modelled by shell elements with equivalent stiffnesses. Models M3.1 and M3.2 adopt more detailed modelling, in which the main structural elements are represented by shell and beam elements. In models M2.1, M2.2 and M3.2, some stiffness-related properties were calibrated using experimental data, via the Douglas-Reid method. The six models were compared to find the most efficient, reliable and easy to implement solution. The results showed that the equivalent shell element approach works very well for the first three modes of vibration out of the five analysed. The more realistic modelling with shell and beam elements returned satisfactory results over a wider range of vibration modes, making it suitable for more comprehensive analyses. In both cases, the crucial importance of accurate representation of connections emerged.
Negli ultimi decenni, l’interesse verso gli edifici alti e medio alti in legno è cresciuto significativamente, poiché rappresentano una possibile risposta alla crescente domanda abitativa e alla necessità di promuovere un’edilizia più sostenibile. Questo tipo di sistemi edilizi comporta nuove sfide progettuali in vari ambiti, tra i quali l’analisi del loro comportamento dinamico. Gli edifici alti in legno sono infatti caratterizzati da un’elevata snellezza e da una massa e modulo elastico inferiori rispetto ai materiali da costruzione convenzionali (come acciaio e calcestruzzo) risultando quindi generalmente più sensibili alle vibrazioni, e potenzialmente meno efficaci nel garantire adeguati livelli di comfort per gli occupanti. Inoltre, il legno è un materiale biologico le cui proprietà sono fortemente sensibili ai parametri ambientali quali il contenuto di umidità, la temperatura e l’umidità relativa con conseguenti effetti sul comportamento dinamico della struttura. Per questo diventa sempre più importante sviluppare strumenti efficaci per l’analisi del comportamento dinamico degli edifici in legno, attraverso test sperimentali e modelli numerici agli elementi finiti. In questa tesi viene analizzato il caso dell’edificio multipiano Hus 37, realizzato con sistema Light Timber Frame e situato a Varberg, in Svezia. L’obiettivo della tesi è sviluppare e calibrare un modello agli elementi finiti (FEM) in grado di descrivere la risposta dinamica dell’edificio, utilizzando metodi di rappresentazione semplificata e facilmente implementabili in software commerciali. I modelli elaborati vengono infine confrontati con dati sperimentali ottenuti tramite prove di Operational Modal Analysis (OMA), per valutarne l’efficacia nella simulazione del comportamento reale dell’edificio. In questo lavoro sono stati sviluppati sei modelli FEM semplificati (M1.1, M1.2, M2.1, M2.2, M3.1 e M3.2): i modelli M1.1, M1.2, M2.1 e M2.2 si basano su una rappresentazione semplificata di pareti e solai, modellati tramite elementi shell con rigidezze equivalenti. I modelli M3.1 e M3.2 adottano una modellazione più dettagliata, in cui gli elementi strutturali principali sono rappresentati mediante elementi shell e beam. Nei modelli M2.1, M2.2 e M3.2 alcune proprietà legate alla rigidezza sono state calibrate utilizzando dati sperimentali, tramite il metodo Douglas-Reid. I sei modelli sono stati confrontati al fine di individuare la soluzione più efficiente, affidabile e di facile implementazione. I risultati hanno mostrato che l’approccio basato su elementi shell equivalenti funziona molto bene per i primi tre modi di vibrare sui cinque analizzati. La modellazione più realistica con elementi shell e beam ha restituito risultati soddisfacenti su un intervallo più ampio di modi di vibrazione, risultando adatta per analisi più complete. In entrambi i casi è emersa l’importanza cruciale di una rappresentazione accurata delle connessioni.
Confronto di metodi di modellazione semplificata per sistemi costruttivi in light timber frame : sviluppo, calibrazione e valutazione di modelli numerici sulla base di dati sperimentali
Malerba, Lucrezia
2024/2025
Abstract
In recent decades, interest in tall and mid-rise wood buildings has grown significantly, as they represent a possible response to the growing demand for housing and the need to promote more sustainable construction. These types of building systems bring new design challenges in various areas, including the analysis of their dynamic behaviour. Tall timber buildings are characterized by high slenderness and lower mass and elastic modulus than conventional building materials (such as steel and concrete), thus being generally more sensitive to vibration, and potentially less effective in ensuring adequate levels of comfort for occupants. In addition, wood is a biological material whose properties are highly sensitive to environmental parameters such as moisture content, temperature and relative humidity with consequent effects on the dynamic behaviour of the structure. Therefore, it becomes increasingly important to develop effective tools for analysing the dynamic behaviour of wood buildings through experimental tests and finite element numerical models. This thesis examines the case of the multi-story building Hus 37, constructed with Light Timber Frame system and located in Varberg, Sweden. The objective of the thesis is to develop and calibrate a finite element model (FEM) capable of describing the dynamic response of the building, using simplified representation methods that are easily implemented in commercial software. Finally, the developed models are compared with experimental data obtained through Operational Modal Analysis (OMA) tests to evaluate their effectiveness in simulating real building behaviour. In this work, six simplified FEM models (M1.1, M1.2, M2.1, M2.2, M3.1 and M3.2) were developed: models M1.1, M1.2, M2.1 and M2.2 are based on a simplified representation of walls and floors, modelled by shell elements with equivalent stiffnesses. Models M3.1 and M3.2 adopt more detailed modelling, in which the main structural elements are represented by shell and beam elements. In models M2.1, M2.2 and M3.2, some stiffness-related properties were calibrated using experimental data, via the Douglas-Reid method. The six models were compared to find the most efficient, reliable and easy to implement solution. The results showed that the equivalent shell element approach works very well for the first three modes of vibration out of the five analysed. The more realistic modelling with shell and beam elements returned satisfactory results over a wider range of vibration modes, making it suitable for more comprehensive analyses. In both cases, the crucial importance of accurate representation of connections emerged.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Malerba.pdf
accessibile in internet per tutti
Descrizione: CONFRONTO DI METODI DI MODELLAZIONE SEMPLIFICATA PER SISTEMI COSTRUTTIVI IN LIGHT TIMBER FRAME Sviluppo, calibrazione e valutazione di modelli numerici sulla base di dati sperimentali
Dimensione
14.34 MB
Formato
Adobe PDF
|
14.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/239972