Moon colonization represents the next target in the field of human space exploration. Several years of increasing effort have led to significant technological advancement and a deeper understanding of deep space. These factors have contributed to the development of new space programs with the aim of establishing a long-term human presence on the Moon. According to this objective, this thesis proposes a conceptual design for a renewable lunar power plant based on concentrating solar power: an offset parabola concentrator produces the thermal power, which is converted into electricity by a recuperative Joule-Brayton system exploiting a Helium-Xenon mixture as working fluid. This power plant has the task of providing the electrical power necessary to cover the loads of a possible future lunar base. The technological selection and the design of each component of the plant are conducted considering the environmental conditions that the plant must face during its operations and the specific location selected for the lunar base. According to the next missions programmed and the specific illumination conditions, the lunar South Pole has been selected as a possible area useful to host a lunar base. From the models defined for each component, the analysis of the plant performances is conducted considering a constant value of net electrical power output and minimizing the overall system mass, as one of the difficulties of space missions is related to the transport. Today, the launch costs are significantly high and the payload is often limited, leading to a very high cost for kilogram of material transported. The analysis carried out follows two steps: first, for each configuration defined by specific thermodynamic conditions, the performance of each component is evaluated varying specific component parameters following each model defined to find the best design in terms of mass. Once each component has been analyzed, it is possible to evaluate the overall mass of the system for the specific configuration. Finally, for each plant configuration analyzed, it is possible to compare the resulting total system mass of each configuration, defining the best plant design.
La colonizzazione lunare rappresenta il prossimo grande obiettivo nel campo dei viaggi spaziali. Anni di sforzi crescenti hanno portato a significativi progressi tecnologici e a una più profonda comprensione dello spazio profondo. Questi fattori hanno contribuito allo sviluppo di nuovi programmi spaziali con l'obiettivo di stabilire una presenza umana a lungo termine sulla Luna. In linea con questo obiettivo, questa tesi propone il progetto di una centrale elettrica rinnovabile basata sulla tecnologia solare a concentrazione: un concentratore parabolico produce la potenza termica che viene convertita in energia elettrica da un sistema Joule-Brayton recuperativo che utilizza una miscela di Elio e Xenon come fluido di lavoro. Tale impianto ha il compito di fornire la potenza elettrica necessaria a soddisfare i carichi di una possibile base lunare. La selezione tecnologica e la progettazione di ciascun componente dell'impianto sono realizzate tenendo conto delle condizioni ambientali che l'impianto deve affrontare durante la sua operatività e della specifica località selezionata per la base lunare. Sulla base delle prossime missioni programmate e delle particolari condizioni di illuminazione, il Polo Sud lunare è stato scelto come area idonea ad ospitare una base lunare. A partire dai modelli definiti per ogni componente, l'analisi delle prestazioni dell'impianto è condotta considerando un valore costante di potenza elettrica netta e minimizzando la massa complessiva del sistema, poiché una delle principali difficoltà delle missioni spaziali è legata al trasporto. Ad oggi, i costi di lancio sono significativamente elevati e il carico utile è spesso limitato, portando a un costo per chilogrammo di materiale trasportato molto alto. L'analisi si articola in due fasi: in primo luogo, per ogni configurazione definita da specifiche condizioni termodinamiche del ciclo di potenza, sono state valutate le prestazioni di ciascun componente variandone i parametri progettuali, al fine di individuare la soluzione migliore in termini di massa. Una volta analizzato ogni componente, è possibile valutare la massa complessiva del sistema per la specifica configurazione. Infine, confrontando la massa totale risultante di ogni configurazione analizzata, è stato possibile definire il progetto ottimale per l'impianto.
Modeling and design of a concentrating solar power plant for moon colonization
Camocardi, Saverio
2024/2025
Abstract
Moon colonization represents the next target in the field of human space exploration. Several years of increasing effort have led to significant technological advancement and a deeper understanding of deep space. These factors have contributed to the development of new space programs with the aim of establishing a long-term human presence on the Moon. According to this objective, this thesis proposes a conceptual design for a renewable lunar power plant based on concentrating solar power: an offset parabola concentrator produces the thermal power, which is converted into electricity by a recuperative Joule-Brayton system exploiting a Helium-Xenon mixture as working fluid. This power plant has the task of providing the electrical power necessary to cover the loads of a possible future lunar base. The technological selection and the design of each component of the plant are conducted considering the environmental conditions that the plant must face during its operations and the specific location selected for the lunar base. According to the next missions programmed and the specific illumination conditions, the lunar South Pole has been selected as a possible area useful to host a lunar base. From the models defined for each component, the analysis of the plant performances is conducted considering a constant value of net electrical power output and minimizing the overall system mass, as one of the difficulties of space missions is related to the transport. Today, the launch costs are significantly high and the payload is often limited, leading to a very high cost for kilogram of material transported. The analysis carried out follows two steps: first, for each configuration defined by specific thermodynamic conditions, the performance of each component is evaluated varying specific component parameters following each model defined to find the best design in terms of mass. Once each component has been analyzed, it is possible to evaluate the overall mass of the system for the specific configuration. Finally, for each plant configuration analyzed, it is possible to compare the resulting total system mass of each configuration, defining the best plant design.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Camocardi_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
36.93 MB
Formato
Adobe PDF
|
36.93 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Camocardi_Executive_Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
2.42 MB
Formato
Adobe PDF
|
2.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240018