The global energy mix is changing rapidly due to technological innovation, political intervention, environment and urbanization. Hydrogen is expected to be a relevant component in the energy mix as it could act as a carbon-neutral energy carrier, enabling back up energy storage capacity for intermittency and seasonal variations. This project has been carried out in collaboration with Shell S.p.A. and focuses on subsurface (geological) storage of hydrogen. The aim is to assess the uncertainties and fill the knowledge gaps related to the necessary input parameters for Underground Hydrogen Storage (UHS) reservoir simulations. The chosen approach is based on micro-CT imaging of un-steady state experimental protocol performed on a Bentheimer sandstone sample. The objective is to capture the two-phase physical interactions of brine with several gases, such as hydrogen, methane and compressed air, to explore potential behavioural differences. Using these data, it was possible to numerically derive the relative permeability values and build the relative permeability-saturation curves, a key parameter for UHS applications. The relative permeability computations were performed on selected sub-regions of the rock, differently from the standard experimental measurements that require to measure a pressure drop over the whole sample. This approach addresses the issue that occurs when the gas clusters disconnect throughout the experiment, and thus not percolate from inlet to outlet. Additionally, the various sections along the sample were each characterized by their own wetting phase saturation value. This led to more data points, which increased the reliability of the curves and allowed us to assess a larger dynamic saturation range. Finally, the relative permeability – saturation relationship was parametrized with a Corey-like function and the respective uncertainty ranges. Proof of concept was provided by comparing the two hydrogen repeat experiments before proceeding with the comparison between the different gases, which seem to be showing similar trends.
L’energy mix globale è in continua evoluzione grazie alla persistente innovazione tecnologica, alle azioni politiche, all’ambiente e all’urbanizzazione. L’idrogeno, vettore energetico a zero emissioni, è considerato come un componente fondamentale per la transitione energetica, in quanto può offrire un polmone per le variazioni stagionali delle risorse rinnovabili e sostituire i carburanti fossili nei settori hard-to-abate. Questo studio è stato svolto in collaborazione con Shell S.p.A. e si concentra nello stoccaggio sotterraneo di idrogeno (UHS). L’obiettivo è di colmare le lacune in letteratura relative ai parametri di input necessari per le simulazioni numeriche dei giacimenti sotterranei. Il metodo scelto si basa sull’acquisizione di immagini di esperimenti di imbibizione non stazionaria su un campione di roccia Bentheimer tramite la tomografia micro-computerizzata (micro-CT), con l’obiettivo di cogliere l’interazione bi-fasica tra acqua salina e diversi gas, tra cui idrogeno, metano e aria compressa. Tramite questi dati è possible calcolare numericamente i valori di permeabilità relativa e costruire le relative curve in funzione della saturazione, che risultano essere parametri fondamentali nelle applicazioni di UHS. La procedura numerica è stata applicata solo su specifiche regioni parziali del campione di roccia, diversamente dall’approccio standard che prevede la misurazione della differenza di pressione sul campione intero. Questa metodologia consente di superare le limitazioni dovute alla disconnessione dei cluster di gas durante l’esperimento e che quindi non percolano tra inlet e outlet. Inoltre, le diverse sezioni considerate sono caratterizzate da saturazioni diverse, con l’ottenimento di un numero maggiore di datapoint, che contribuiscono alla attendibilità del modello e consentono di esaminare un maggiore intervallo di valori di saturazione dinamica. Per concludere, la relazione tra permeabilità relativa e saturazione è stata parametrizzata seguendo una modifica al modello di Corey e considerando l’incertezza delle misurazioni. La validazione del protocollo è stata effettuata tramite il confronto tra i due esperimenti con l’idrogeno prima di proseguire con il confronto tra i diversi gas, che sembrano presentare comportamenti simili.
Numerical and experimental study of pore-scale physics for underground hydrogen storage
Parente, Eleonora
2024/2025
Abstract
The global energy mix is changing rapidly due to technological innovation, political intervention, environment and urbanization. Hydrogen is expected to be a relevant component in the energy mix as it could act as a carbon-neutral energy carrier, enabling back up energy storage capacity for intermittency and seasonal variations. This project has been carried out in collaboration with Shell S.p.A. and focuses on subsurface (geological) storage of hydrogen. The aim is to assess the uncertainties and fill the knowledge gaps related to the necessary input parameters for Underground Hydrogen Storage (UHS) reservoir simulations. The chosen approach is based on micro-CT imaging of un-steady state experimental protocol performed on a Bentheimer sandstone sample. The objective is to capture the two-phase physical interactions of brine with several gases, such as hydrogen, methane and compressed air, to explore potential behavioural differences. Using these data, it was possible to numerically derive the relative permeability values and build the relative permeability-saturation curves, a key parameter for UHS applications. The relative permeability computations were performed on selected sub-regions of the rock, differently from the standard experimental measurements that require to measure a pressure drop over the whole sample. This approach addresses the issue that occurs when the gas clusters disconnect throughout the experiment, and thus not percolate from inlet to outlet. Additionally, the various sections along the sample were each characterized by their own wetting phase saturation value. This led to more data points, which increased the reliability of the curves and allowed us to assess a larger dynamic saturation range. Finally, the relative permeability – saturation relationship was parametrized with a Corey-like function and the respective uncertainty ranges. Proof of concept was provided by comparing the two hydrogen repeat experiments before proceeding with the comparison between the different gases, which seem to be showing similar trends.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Parente_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
10.11 MB
Formato
Adobe PDF
|
10.11 MB | Adobe PDF | Visualizza/Apri |
2025_07_Parente_ExecutiveSummary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240029