The rapid development of high-power, high-repetition-rate laser systems has led to unprecedented challenges for radiation protection in laser-driven accelerator environments, where ultra-short pulsed, high-intensity secondary radiation fields are generated. This thesis investigates the response of the LB 6419 detector in the high-repetition-rate, ultra-short pulsed radiation environment of the ALFA beamline at the ELI Beamlines facility. ALFA is a laser-plasma electron accelerator operating at 1 kHz, driven by the L1-Allegra laser, and capable of producing intense mixed radiation fields. The study involves a comprehensive evaluation of the usability of the LB 6419 under these extreme conditions, combining experimental measurements with FLUKA Monte Carlo simulations. For the first time, the detector has been systematically studied in ultra-short pulsed radiation fields at 1 kHz and deliberately tested beyond its manufacturer specification limits, by placing it also in close proximity to the interaction chamber of a laser-driven accelerator, an environment radically different from the low-dose-rate areas it was originally designed for. This allowed for a critical evaluation of its performance, limitations, and potential suitability for radiation monitoring in similarly harsh environments. The comparison between experimental results and Monte Carlo simulations revealed discrepancies, reflecting the challenges associated with the numerical reproduction of such radiation fields and confirming the need for a more accurate source term definition.
Negli ultimi anni, la crescente diffusione di sistemi laser ad alta potenza e alta frequenza di ripetizione ha posto nuove sfide in ambito radioprotezionistico, soprattutto nei contesti sperimentali basati su acceleratori di particelle a laser, caratterizzati da impulsi ultra-intensi e ultra-brevi.La presente tesi si inserisce in questo scenario e si concentra sullo studio della risposta del rivelatore LB 6419 in condizioni di radiazione impulsata ad alta frequenza, prodotta dall’acceleratore ALFA presso il centro di ricerca ELI Beamlines. ALFA è un acceleratore di elettroni basato su interazione laser-plasma, funzionante a 1 kHz e alimentato dal laser L1-Allegra, in grado di generare campi di radiazione secondaria particolarmente intensi. Il lavoro include una caratterizzazione approfondita del rivelatore attraverso misure sperimentali combinate con simulazioni Monte Carlo effettuate con il codice FLUKA. Il dispositivo è stato oggetto di uno studio sistematico in campi di radiazione misti impulsati a 1 kHz ed è stato testato in condizioni operative ben più severe rispetto a quelle per cui era stato originariamente concepito. Il confronto tra dati sperimentali e simulazioni ha messo in evidenza discrepanze significative, evidenziando le difficoltà nel modellare numericamente questi campi e sottolineando la necessità di migliorare la definizione dei termini sorgente. I risultati hanno offerto una valutazione approfondita delle prestazioni del rivelatore in condizioni di radiazione complesse, mettendone in luce criticità e possibili applicazioni in scenari sperimentali avanzati.
Study of the response of the LB 6419 dose meter at the ELI Beamlines laser-driven, ultra-short pulsed and high frequency electron accelerator ALFA
Villa, Carola
2024/2025
Abstract
The rapid development of high-power, high-repetition-rate laser systems has led to unprecedented challenges for radiation protection in laser-driven accelerator environments, where ultra-short pulsed, high-intensity secondary radiation fields are generated. This thesis investigates the response of the LB 6419 detector in the high-repetition-rate, ultra-short pulsed radiation environment of the ALFA beamline at the ELI Beamlines facility. ALFA is a laser-plasma electron accelerator operating at 1 kHz, driven by the L1-Allegra laser, and capable of producing intense mixed radiation fields. The study involves a comprehensive evaluation of the usability of the LB 6419 under these extreme conditions, combining experimental measurements with FLUKA Monte Carlo simulations. For the first time, the detector has been systematically studied in ultra-short pulsed radiation fields at 1 kHz and deliberately tested beyond its manufacturer specification limits, by placing it also in close proximity to the interaction chamber of a laser-driven accelerator, an environment radically different from the low-dose-rate areas it was originally designed for. This allowed for a critical evaluation of its performance, limitations, and potential suitability for radiation monitoring in similarly harsh environments. The comparison between experimental results and Monte Carlo simulations revealed discrepancies, reflecting the challenges associated with the numerical reproduction of such radiation fields and confirming the need for a more accurate source term definition.File | Dimensione | Formato | |
---|---|---|---|
2025_7_Villa_Executive Summary.pdf
solo utenti autorizzati a partire dal 25/06/2026
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
2025_7_Villa_Tesi.pdf
solo utenti autorizzati a partire dal 29/06/2026
Dimensione
18.46 MB
Formato
Adobe PDF
|
18.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240045