Despite advancements in medical research and therapy, cancer remains a major global health issue due to its complexity in treatment. Depending on the type and extent of the disease, a range of therapeutic strategies have been developed. However, removing cancerous cells without harming surrounding healthy tissue is a critical challenge. As such, there is extensive ongoing research into personalized and targeted mechanisms for treating cancer and other such critical diseases. The targeted drug delivery (TDD) strategy has emerged as a way to increase the effectiveness of treatment while reducing side effects. Molecular Communication (MC) is an innovative communication paradigm that analyzes the flow of molecules between biological entities. Leveraging MC can help biologists design drug carrier cells to perform therapeutic operations efficiently through a targeted mechanism. This thesis envisions a TDD approach by proposing a hybrid navigation mechanism that utilizes chemotaxis and entropy to direct nanoscale medical agents (NMAs) toward cancerous regions within a tumor microenvironment (TME) to release medication and remove the tumors. The main novelty of our work lies in the application of information-theoretic metrics, within MC, to guide NMAs toward tumors. Given that cancerous cells consume a considerably higher amount of oxygen than healthy cells, we used hypoxia (low amount of oxygen) as our biomarker and exploited the heterogeneity around the tumor, due to its irregular oxygen consumption, to design our navigation mechanism. The numerical results show that the effectiveness and reliability of the hybrid navigation strategy are significantly higher than those of the random and chemotaxis navigation mechanisms. Furthermore, analysis of cancer cell statistics over time demonstrates that the proposed method eliminates tumors faster than the other two strategies. The proposed approach can be adapted to study other diseases by modifying the characteristics of the TME, NMA, and further analyzing their interactions using semantic information and subjective information for prioritizing essential information, enabling the development of efficient and effective TDD for managing complex diseases.
Nonostante i progressi nella ricerca medica e nelle terapie, il cancro rimane una delle principali problematiche sanitarie in tutto il mondo poiché è difficile sia da rilevare sia da trattare. Sono state sviluppate diverse strategie terapeutiche a seconda del tipo e dello stadio della malattia. Tuttavia, eliminare le cellule cancerose senza danneggiare i tessuti sani circostanti rappresenta tutt’oggi una sfida critica. Per questo motivo, sono in corso molteplici ricerche su specifici meccanismi per trattare in modo mirato il cancro e altre malattie gravi. La strategia della somministrazione mirata di farmaci (Targeted Drug Delivery, TDD) è emersa come un modo per aumentare l’efficacia del trattamento riducendone gli effetti collaterali. La Comunicazione Molecolare (Molecular Communication, MC) è un paradigma innovativo che analizza il flusso di molecole tra entità biologiche. Sfruttare la MC può aiutare i biologi a progettare cellule vettore di farmaci in grado di eseguire operazioni terapeutiche in modo efficiente attraverso un meccanismo mirato. Questa tesi propone un approccio TDD basato su un meccanismo di navigazione ibrido che utilizza la chemotassi e l'entropia per guidare agenti medici su scala nanometrica (NMA) verso le regioni cancerose all'interno del microambiente tumorale (TME), al fine di rilasciare il farmaco ed eliminare i tumori. La principale novità del nostro lavoro risiede nell'applicazione di metriche basate sulla teoria dell'informazione, all'interno della MC, per guidare gli NMA verso i tumori. Considerando che le cellule cancerose consumano una quantità di ossigeno significativamente maggiore rispetto a quelle sane, abbiamo utilizzato l’ipossia (bassa concentrazione di ossigeno) come biomarcatore e abbiamo sfruttato l’eterogeneità intorno al tumore, dovuta al suo consumo irregolare di ossigeno, per progettare il nostro meccanismo di navigazione. I risultati numerici mostrano che l’efficacia e l’affidabilità della strategia di navigazione ibrida sono molto superiori rispetto ai meccanismi di navigazione casuale o basati solo sulla chemotassi. Inoltre, l’analisi delle statistiche relative alle cellule tumorali, nel lungo periodo, dimostra che il metodo proposto elimina i tumori più rapidamente rispetto alle altre due strategie. L’approccio proposto può essere adattato allo studio di altre malattie, modificando le caratteristiche del TME e degli NMA, e analizzandone ulteriormente le interazioni utilizzando l'informazione semantica e soggettiva per dare priorità alle informazioni essenziali, consentendo così lo sviluppo di strategie TDD efficienti ed efficaci per la gestione di malattie complesse.
Entropy-driven effective tumor detection using nanoscale medical agents
HEDAYATI, BAHRAM
2024/2025
Abstract
Despite advancements in medical research and therapy, cancer remains a major global health issue due to its complexity in treatment. Depending on the type and extent of the disease, a range of therapeutic strategies have been developed. However, removing cancerous cells without harming surrounding healthy tissue is a critical challenge. As such, there is extensive ongoing research into personalized and targeted mechanisms for treating cancer and other such critical diseases. The targeted drug delivery (TDD) strategy has emerged as a way to increase the effectiveness of treatment while reducing side effects. Molecular Communication (MC) is an innovative communication paradigm that analyzes the flow of molecules between biological entities. Leveraging MC can help biologists design drug carrier cells to perform therapeutic operations efficiently through a targeted mechanism. This thesis envisions a TDD approach by proposing a hybrid navigation mechanism that utilizes chemotaxis and entropy to direct nanoscale medical agents (NMAs) toward cancerous regions within a tumor microenvironment (TME) to release medication and remove the tumors. The main novelty of our work lies in the application of information-theoretic metrics, within MC, to guide NMAs toward tumors. Given that cancerous cells consume a considerably higher amount of oxygen than healthy cells, we used hypoxia (low amount of oxygen) as our biomarker and exploited the heterogeneity around the tumor, due to its irregular oxygen consumption, to design our navigation mechanism. The numerical results show that the effectiveness and reliability of the hybrid navigation strategy are significantly higher than those of the random and chemotaxis navigation mechanisms. Furthermore, analysis of cancer cell statistics over time demonstrates that the proposed method eliminates tumors faster than the other two strategies. The proposed approach can be adapted to study other diseases by modifying the characteristics of the TME, NMA, and further analyzing their interactions using semantic information and subjective information for prioritizing essential information, enabling the development of efficient and effective TDD for managing complex diseases.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Hedayati_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
18.22 MB
Formato
Adobe PDF
|
18.22 MB | Adobe PDF | Visualizza/Apri |
2025_07_Hedayati_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240052