Galvanic isolation is important for safety and proper operation in high-voltage environments such as industrial automation, automotive systems, and medical devices. Traditional inorganic dielectrics like silicon dioxide perform well, but also have some drawbacks as their thickness cannot exceed 15 µm, which is not su cient to handle high voltages; also they are too susceptible to electrostatic discharge. Polymeric insulators can be designed with thicker layers, but are harder to model due to their structural disorder and sensitivity to environmental conditions. This thesis presents a numerical investigation into the mechanisms of dielectric degradation occurring in polymeric insulators, which are commonly employed for galvanic isolation in high-voltage electronic systems. The study aims to model the progressive increase in leakage current that occurs under prolonged electrical stress, based on a simplified representation of the physical processes that govern the reliability and failure of these materials over time. The work focuses on Time-Dependent Dielectric Breakdown (TDDB), a reliability test in which a dielectric material gradually degrades and eventually fails when subjected to a constant high electric field over an extended period of time. A core part of the work involves the use of a commercial Technology Computer Aided Design (TCAD) simulator to construct a physical simulation model capable of replicating the complex charge transport dynamics observed in disordered polymeric systems. The starting point was to shape an inorganic insulator to replicate the characteristics of a polymeric one, such as the Gaussian distribution of the localized states, the wide energy gap and the presence of traps. Second step was to reproduce the hysteretical behavior of the current before applying electrical stress to the material: this was obtained by adjusting trap parameters like trap energy levels, distribution and concentration. Finally, current after electrical stress was reproduced by increasing the localized energy states quantity σ, which can be interpreted as the material grade of disorder. In conclusion, this methodology serves as a qualitative validation framework that tests whether a proposed physical model reproduces expected trends and can be further improved by adding more parameters into the study, like humidity and temperature.
L'isolamento galvanico è importante per la sicurezza e il corretto funzionamento in ambienti ad alta tensione, come l'automazione industriale, i sistemi automobilistici e i dispositivi medici. I dielettrici inorganici tradizionali, come il diossido di silicio, funzionano bene, ma presentano anche alcuni svantaggi poiché il loro spessore non può superare i 15 µm, non sufficiente per sopportare alte tensioni; inoltre, sono troppo suscettibili alle scariche elettrostatiche. Gli isolanti polimerici possono essere progettati con strati più spessi, ma sono più diffcili da modellare a causa del loro disordine strutturale e della sensibilità alle condizioni ambientali. Questa tesi presenta un'indagine numerica sui meccanismi di degradazione dielettrica che si verificano negli isolanti polimerici, comunemente impiegati per l'isolamento galvanico nei sistemi elettronici ad alta tensione. Lo studio mira a modellare l'aumento progressivo della corrente di dispersione che si verifica sotto stress elettrico prolungato, basandosi su una rappresentazione semplificata dei processi fisici che governano l'affidabilità e il cedimento di questi materiali nel tempo. Il lavoro si concentra sulla Time-Dependent Dielectric Breakdown (TDDB), un test di affidabilità in cui un materiale dielettrico si degrada gradualmente fino a deteriorarsi, sottoposto a un campo elettrico costante per un lungo periodo. Una parte centrale dello studio riguarda l'utilizzo di un simulatore commerciale Technology Computer Aided Design (TCAD) per costruire un modello di simulazione fisica capace di replicare le complesse dinamiche di trasporto di carica osservate nei sistemi polimerici disordinati. Il punto di partenza è stato modellare un isolante inorganico per replicare le caratteristiche di uno polimerico, come la distribuzione gaussiana degli stati localizzati, l'ampio gap energetico e la presenza di trappole. Il secondo passo è stato riprodurre il comportamento isteretico della corrente prima di applicare stress elettrico al materiale: ciò è stato ottenuto regolando i parametri delle trappole come i livelli energetici, la distribuzione e la concentrazione. Infine, la corrente dopo lo stress elettrico è stata riprodotta aumentando la quantità di stati energetici localizzati σ, che può essere interpretata come il grado di disordine del materiale. In conclusione, questa metodologia funge da framework di validazione qualitativa che verifica se un modello fisico proposto riproduce gli andamenti attesi e può essere ulteriormente migliorata aggiungendo più parametri nello studio, come umidità e temperatura.
TCAD simulations of stress-induced currents in polymeric dielectrics for galvanic isolators
MARINONI, MATTIA
2024/2025
Abstract
Galvanic isolation is important for safety and proper operation in high-voltage environments such as industrial automation, automotive systems, and medical devices. Traditional inorganic dielectrics like silicon dioxide perform well, but also have some drawbacks as their thickness cannot exceed 15 µm, which is not su cient to handle high voltages; also they are too susceptible to electrostatic discharge. Polymeric insulators can be designed with thicker layers, but are harder to model due to their structural disorder and sensitivity to environmental conditions. This thesis presents a numerical investigation into the mechanisms of dielectric degradation occurring in polymeric insulators, which are commonly employed for galvanic isolation in high-voltage electronic systems. The study aims to model the progressive increase in leakage current that occurs under prolonged electrical stress, based on a simplified representation of the physical processes that govern the reliability and failure of these materials over time. The work focuses on Time-Dependent Dielectric Breakdown (TDDB), a reliability test in which a dielectric material gradually degrades and eventually fails when subjected to a constant high electric field over an extended period of time. A core part of the work involves the use of a commercial Technology Computer Aided Design (TCAD) simulator to construct a physical simulation model capable of replicating the complex charge transport dynamics observed in disordered polymeric systems. The starting point was to shape an inorganic insulator to replicate the characteristics of a polymeric one, such as the Gaussian distribution of the localized states, the wide energy gap and the presence of traps. Second step was to reproduce the hysteretical behavior of the current before applying electrical stress to the material: this was obtained by adjusting trap parameters like trap energy levels, distribution and concentration. Finally, current after electrical stress was reproduced by increasing the localized energy states quantity σ, which can be interpreted as the material grade of disorder. In conclusion, this methodology serves as a qualitative validation framework that tests whether a proposed physical model reproduces expected trends and can be further improved by adding more parameters into the study, like humidity and temperature.File | Dimensione | Formato | |
---|---|---|---|
Tesi finale.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
3.48 MB
Formato
Adobe PDF
|
3.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240071