In high-mix, low-volume manufacturing environments such as subsea valve production at Advanced Technology Valve (ATV), scheduling multiple concurrent customer proposals presents a complex operational challenge. Proposals vary in delivery commitments, priority levels, and resource demands, while production capacity remains limited and shared across phases. This thesis addresses the core question: How can scheduling be optimized to fulfil committed lead times, manage resource constraints, and maintain production stability across multiple overlapping proposals? To solve this, a modular algorithm was developed that combines backward scheduling for committed proposals, forward scheduling for non-committed proposals, and a structured optimization logic to resolve conflicts. The algorithm was implemented using real-world data provided by ATV, including detailed proposal information, production phases, labor requirements, and backlog history. All scheduling decisions are governed by rule-based logic that maintains phase sequencing, enforces a minimum 8-hour start threshold, and respects weekly capacity availability adjusted for existing backlog and allocations. A business process analysis using IDEF0 modelling ensured the algorithm aligned with ATV’s operational context. Testing was performed across diverse scenarios that recreated realistic scheduling bottlenecks and delivery pressures. The results confirmed that the system accurately allocates workload, minimizes lead time violations, and provides transparent outputs in the form of scheduling tables and Gantt charts. Visualization tools illustrate performance metrics such as lead time adherence, resource utilization, and backlog management. This work contributes a flexible, industry-oriented solution for complex scheduling environments, particularly in Engineer to Order contexts. It offers not only a functioning planning tool for ATV but also a transferable framework for similar industrial settings. The algorithm is extendable and sets the stage for future development in AI-enhanced scheduling, ERP/MES system integration, and automated scenario testing for continuous improvement.
In ambienti produttivi caratterizzati da un’elevata varietà e da un basso volume, come la produzione di valvole sottomarine presso Advanced Technology Valve (ATV), la pianificazione simultanea di più proposte rappresenta una sfida operativa complessa. Le proposte differiscono per priorità, tempi di consegna e fabbisogni di risorse, mentre la capacità produttiva resta limitata e condivisa tra diverse fasi. Questa tesi affronta la seguente domanda di ricerca: Come può essere ottimizzata la pianificazione della produzione per rispettare i lead time concordati, gestire i vincoli di risorse e garantire stabilità operativa in presenza di proposte sovrapposte? Per rispondere, è stato sviluppato un algoritmo modulare che combina la pianificazione a ritroso per le proposte con scadenze vincolanti, la pianificazione in avanti per le proposte flessibili e una logica strutturata di ottimizzazione per risolvere conflitti tra risorse. L’algoritmo è stato implementato utilizzando dati reali forniti da ATV, tra cui informazioni dettagliate sulle proposte, le fasi produttive, i carichi di lavoro, i calendari delle risorse e lo storico degli arretrati. Tutte le decisioni di pianificazione seguono una logica basata su regole che rispettano la sequenza delle fasi, impongono soglie minime di avvio (es. regola delle 8 ore) e tengono conto della disponibilità settimanale corretta per arretrati e allocazioni precedenti. L’intero flusso produttivo è stato prima modellato tramite un diagramma funzionale IDEF0 e un’analisi contestuale di business, per garantire che l’algoritmo riflettesse fedelmente la struttura operativa dell’azienda. I test, condotti su scenari realistici, hanno dimostrato che il sistema alloca correttamente i carichi di lavoro, riduce le violazioni dei lead time e genera output chiari sotto forma di tabelle di pianificazione e diagrammi di Gantt. Sono stati inoltre sviluppati strumenti di visualizzazione per analizzare indicatori di performance quali il rispetto delle scadenze, l’utilizzo delle risorse e la gestione dell’arretrato. Questa tesi contribuisce con una soluzione flessibile e orientata all’industria per ambienti di produzione complessi, specialmente in contesti “Engineer to Order”. Il modello proposto rappresenta sia uno strumento operativo per ATV sia una base trasferibile per applicazioni in settori industriali affini. L’algoritmo è estensibile e costituisce il punto di partenza per sviluppi futuri legati all’intelligenza artificiale, all’integrazione con sistemi ERP/MES e alla generazione automatica di scenari per il miglioramento continuo.
Development of a proposal-based scheduling and optimization algorithm for engineering to order manufacturing: application in the subsea valve industry
AGRAWAL, PRAGATI;KHAN, MOHD YASIR
2024/2025
Abstract
In high-mix, low-volume manufacturing environments such as subsea valve production at Advanced Technology Valve (ATV), scheduling multiple concurrent customer proposals presents a complex operational challenge. Proposals vary in delivery commitments, priority levels, and resource demands, while production capacity remains limited and shared across phases. This thesis addresses the core question: How can scheduling be optimized to fulfil committed lead times, manage resource constraints, and maintain production stability across multiple overlapping proposals? To solve this, a modular algorithm was developed that combines backward scheduling for committed proposals, forward scheduling for non-committed proposals, and a structured optimization logic to resolve conflicts. The algorithm was implemented using real-world data provided by ATV, including detailed proposal information, production phases, labor requirements, and backlog history. All scheduling decisions are governed by rule-based logic that maintains phase sequencing, enforces a minimum 8-hour start threshold, and respects weekly capacity availability adjusted for existing backlog and allocations. A business process analysis using IDEF0 modelling ensured the algorithm aligned with ATV’s operational context. Testing was performed across diverse scenarios that recreated realistic scheduling bottlenecks and delivery pressures. The results confirmed that the system accurately allocates workload, minimizes lead time violations, and provides transparent outputs in the form of scheduling tables and Gantt charts. Visualization tools illustrate performance metrics such as lead time adherence, resource utilization, and backlog management. This work contributes a flexible, industry-oriented solution for complex scheduling environments, particularly in Engineer to Order contexts. It offers not only a functioning planning tool for ATV but also a transferable framework for similar industrial settings. The algorithm is extendable and sets the stage for future development in AI-enhanced scheduling, ERP/MES system integration, and automated scenario testing for continuous improvement.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_7_Agrawal_Khan.pdf
accessibile in internet per tutti
Descrizione: Text of the thesis
Dimensione
5.95 MB
Formato
Adobe PDF
|
5.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240076