The main goal of this thesis is to understand the relationship between Supply Chain Analytics (SCA) and Supply Chain Innovation (SCI), and to explain through a detailed conceptual framework, how data analytics can drive innovation in supply chains. A review of the literature was paired with a study that included interviews with experts in the supply chain industry. It examines how analytics such as descriptive, prescriptive, and diagnostic promote innovation in different organizations. According to the findings, SCA supports SCI by enabling immediate decisions, improving reactions, and bringing out potential innovations. However, incorporating analytics into the innovation process is not always easy. The potent challenges come from strategies that don’t align, data that is not linked together, a lack of analytics, and resistance from inside the organization. There are three important contributions offered by this thesis: • It establishes a clear conceptual link between analytics capabilities and innovation outcomes. • It offers a conceptual framework that organizations can apply to align analytical efforts with innovation goals. • It identifies the challenges companies face in leveraging analytics for innovation and offers insights into overcoming them. It was found in the research that SCA is generally used to boost efficiency but can also lead to new ideas and advancements. Companies can only take advantage of these possibilities by adopting an organized and strategic way to set up analytics. This research will help grow the field of supply chain digital transformation and provides useful advice to industry leaders.
L'obiettivo principale di questa tesi è comprendere la relazione tra Supply Chain Analytics (SCA) e Supply Chain Innovation (SCI) e spiegare, attraverso un dettagliato framework concettuale, come l'analisi dei dati possa guidare l’innovazione nelle catene di approvvigionamento. Alla revisione della letteratura è stato affiancato uno studio basato su interviste con esperti del settore della supply chain. La ricerca esamina in che modo strumenti analitici come l’analisi descrittiva, predittiva, prescrittiva e diagnostica promuovano l’innovazione in diverse organizzazioni. Secondo i risultati ottenuti, la SCA supporta la SCI permettendo decisioni immediate, reazioni più efficaci e favorendo potenziali innovazioni. Tuttavia, integrare l’analisi dei dati nei processi innovativi non è sempre semplice. Le principali sfide derivano da strategie non allineate, dati non connessi, mancanza di competenze analitiche e resistenze interne all’organizzazione. Questa tesi offre tre contributi fondamentali: • Stabilisce un chiaro legame concettuale tra le capacità analitiche e i risultati innovativi. • Propone un framework concettuale che le organizzazioni possono utilizzare per allineare gli sforzi analitici con gli obiettivi di innovazione. • Identifica le sfide che le aziende affrontano nell’utilizzare l’analisi dei dati per innovare e fornisce spunti per superarle. La ricerca ha rilevato che la SCA viene generalmente impiegata per migliorare l’efficienza, ma può anche generare nuove idee e progressi. Le aziende possono sfruttare appieno queste opportunità solo adottando un approccio strategico e organizzato all’implementazione dell’analisi. Questo studio contribuisce allo sviluppo della trasformazione digitale della supply chain e fornisce consigli utili ai leader del settore.
The relationship between supply chain analytics and supply chain innovation: a conceptual framework and an interview study
Suleimenova, Shynar
2024/2025
Abstract
The main goal of this thesis is to understand the relationship between Supply Chain Analytics (SCA) and Supply Chain Innovation (SCI), and to explain through a detailed conceptual framework, how data analytics can drive innovation in supply chains. A review of the literature was paired with a study that included interviews with experts in the supply chain industry. It examines how analytics such as descriptive, prescriptive, and diagnostic promote innovation in different organizations. According to the findings, SCA supports SCI by enabling immediate decisions, improving reactions, and bringing out potential innovations. However, incorporating analytics into the innovation process is not always easy. The potent challenges come from strategies that don’t align, data that is not linked together, a lack of analytics, and resistance from inside the organization. There are three important contributions offered by this thesis: • It establishes a clear conceptual link between analytics capabilities and innovation outcomes. • It offers a conceptual framework that organizations can apply to align analytical efforts with innovation goals. • It identifies the challenges companies face in leveraging analytics for innovation and offers insights into overcoming them. It was found in the research that SCA is generally used to boost efficiency but can also lead to new ideas and advancements. Companies can only take advantage of these possibilities by adopting an organized and strategic way to set up analytics. This research will help grow the field of supply chain digital transformation and provides useful advice to industry leaders.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Suleimenova.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: thesis
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240086