This thesis examines comprehensive strategies for integrating photovoltaic (PV) systems in public school buildings in Italy, with the dual aim of enhancing energy performance and making a meaningful contribution to the broader national and European decarbonization agenda. School buildings, as permanent public assets with stable occupancy patterns and predictable operational demands, present a strategic opportunity for targeted energy retrofits that align with climate policy and sustainability frameworks. However, realizing this potential demands a meticulous synthesis of architectural design, regulatory compliance, and technological innovation. To address these challenges, the study employs a scenario-based approach grounded in a multidisciplinary methodology. The work integrates detailed geometric and thermal modeling, compliance analysis with Italian building regulations, and dynamic energy simulations using IESVE software. Ten retrofit scenarios are developed, reflecting combinations of technical interventions, including heating system selection (gas boiler or electric heat pump with or without heat recovery), depth of building envelope refurbishment, extent of PV deployment (partial or complete rooftop array), integration of battery storage, and the inclusion of active summer cooling systems. The performance of each scenario is assessed based on energy consumption, PV generation, grid import/export balance, and seasonal variability. Among these configurations, Scenario 10b emerges as the most effective, combining a high-efficiency heat pump with heat recovery, maximized PV deployment (~97,000 kWh annual generation), advanced envelope refurbishment, and battery storage. This integrated solution achieves annual grid import reductions of over 60%, with grid reliance eliminated in May and reduced by up to 80% in April. Heating demand is reduced by up to 47% during the winter months, and cooling loads are reduced by 10–14% during the summer, confirming the importance of passive measures in managing both heating and cooling energy use. By contrast, Scenario 10a, representing limited intervention, achieves far lower performance, with continued high dependency on external grid electricity. The study highlights how seasonal variability influences retrofit performance, with the most significant percentage reductions in grid imports occurring during spring and autumn and significant absolute savings during high-demand summer periods despite increased cooling loads. Scenarios lacking adequate insulation, paired with active cooling systems, showed increased electricity use, reinforcing the need for both passive and active measures to work together. In conclusion, the thesis proposes a replicable decision-making framework to guide the retrofit of educational buildings. The framework is designed to help policymakers, architects, and engineers evaluate trade-offs between technical feasibility, and environmental impact, supporting optimized solutions tailored to local contexts. The findings demonstrate that energy-efficient retrofitting of schools, when approached holistically, can deliver deep energy savings, operational resilience, and a meaningful contribution to long-term sustainability objectives.
Questa tesi esamina strategie integrate e approfondite per l’inserimento di sistemi fotovoltaici (PV) negli edifici scolastici pubblici in Italia, con il duplice obiettivo di migliorare le prestazioni energetiche e contribuire in modo significativo all’agenda di decarbonizzazione nazionale ed europea. Gli edifici scolastici, in quanto beni pubblici permanenti caratterizzati da schemi di occupazione stabili e profili operativi prevedibili, rappresentano un’opportunità strategica per interventi mirati di riqualificazione energetica in linea con le politiche climatiche e i quadri di sostenibilità. Tuttavia, per concretizzare questo potenziale, è necessario un attento equilibrio tra progettazione architettonica, conformità normativa e innovazione tecnologica. Per affrontare tali sfide, lo studio adotta un approccio basato su scenari, fondato su una metodologia multidisciplinare. Il lavoro integra modellazioni geometriche e termiche dettagliate, analisi della conformità alle normative edilizie italiane e simulazioni energetiche dinamiche condotte mediante il software IESVE. Sono stati sviluppati dieci scenari di riqualificazione, che rappresentano combinazioni di interventi tecnici comprendenti la scelta del sistema di riscaldamento (caldaia a gas o pompa di calore elettrica con o senza recupero di calore), il grado di riqualificazione dell’involucro edilizio, l’estensione dell’impianto fotovoltaico (parziale o totale), l’integrazione di sistemi di accumulo elettrico e la presenza di sistemi di raffrescamento attivo estivo. Le prestazioni di ciascuno scenario sono state valutate in base al consumo energetico, alla produzione fotovoltaica, al bilancio di importazione/esportazione dalla rete e alla variabilità stagionale. Tra le configurazioni analizzate, lo Scenario 10b si è rivelato il più efficace, combinando una pompa di calore ad alta efficienza con recupero di calore, la massima installazione fotovoltaica (~97.000 kWh di produzione annua), la riqualificazione avanzata dell’involucro edilizio e l’integrazione di un sistema di accumulo. Questa soluzione integrata ha permesso di ridurre le importazioni annue dalla rete di oltre il 60%, azzerando la dipendenza dalla rete nel mese di maggio e riducendola fino all’80% in aprile. La domanda di riscaldamento è stata ridotta fino al 47% durante i mesi invernali, mentre i carichi di raffrescamento sono stati diminuiti del 10–14% durante l’estate, confermando l’importanza delle misure passive nella gestione integrata dei consumi per il riscaldamento e il raffrescamento. Al contrario, lo Scenario 10a, rappresentativo di un intervento limitato, ha mostrato prestazioni nettamente inferiori, mantenendo un’elevata dipendenza dall’energia di rete. Lo studio evidenzia come la variabilità stagionale influenzi le prestazioni degli interventi: le maggiori riduzioni percentuali nelle importazioni si verificano in primavera e in autunno, mentre anche nei periodi estivi caratterizzati da un’elevata domanda si registrano significativi risparmi assoluti, nonostante l’aumento dei carichi di raffrescamento. Gli scenari privi di un adeguato isolamento combinato con sistemi di raffrescamento attivo hanno mostrato un incremento dei consumi elettrici, sottolineando la necessità di un’integrazione sinergica tra misure passive e attive. In conclusione, la tesi propone un quadro decisionale replicabile per guidare la riqualificazione energetica degli edifici scolastici. Tale framework è concepito per supportare decisori politici, architetti e ingegneri nella valutazione dei compromessi tra fattibilità tecnica e impatto ambientale, favorendo soluzioni ottimizzate e contestualizzate rispetto alle specificità locali. I risultati dimostrano che la riqualificazione energetica delle scuole, se affrontata in modo olistico, può garantire notevoli risparmi energetici, maggiore resilienza operativa e un contributo significativo agli obiettivi di sostenibilità a lungo termine.
Renewable energy transition in schools: technical, spatial and regulatory strategies for PV implementation
GHORBANI, NILOOFAR
2024/2025
Abstract
This thesis examines comprehensive strategies for integrating photovoltaic (PV) systems in public school buildings in Italy, with the dual aim of enhancing energy performance and making a meaningful contribution to the broader national and European decarbonization agenda. School buildings, as permanent public assets with stable occupancy patterns and predictable operational demands, present a strategic opportunity for targeted energy retrofits that align with climate policy and sustainability frameworks. However, realizing this potential demands a meticulous synthesis of architectural design, regulatory compliance, and technological innovation. To address these challenges, the study employs a scenario-based approach grounded in a multidisciplinary methodology. The work integrates detailed geometric and thermal modeling, compliance analysis with Italian building regulations, and dynamic energy simulations using IESVE software. Ten retrofit scenarios are developed, reflecting combinations of technical interventions, including heating system selection (gas boiler or electric heat pump with or without heat recovery), depth of building envelope refurbishment, extent of PV deployment (partial or complete rooftop array), integration of battery storage, and the inclusion of active summer cooling systems. The performance of each scenario is assessed based on energy consumption, PV generation, grid import/export balance, and seasonal variability. Among these configurations, Scenario 10b emerges as the most effective, combining a high-efficiency heat pump with heat recovery, maximized PV deployment (~97,000 kWh annual generation), advanced envelope refurbishment, and battery storage. This integrated solution achieves annual grid import reductions of over 60%, with grid reliance eliminated in May and reduced by up to 80% in April. Heating demand is reduced by up to 47% during the winter months, and cooling loads are reduced by 10–14% during the summer, confirming the importance of passive measures in managing both heating and cooling energy use. By contrast, Scenario 10a, representing limited intervention, achieves far lower performance, with continued high dependency on external grid electricity. The study highlights how seasonal variability influences retrofit performance, with the most significant percentage reductions in grid imports occurring during spring and autumn and significant absolute savings during high-demand summer periods despite increased cooling loads. Scenarios lacking adequate insulation, paired with active cooling systems, showed increased electricity use, reinforcing the need for both passive and active measures to work together. In conclusion, the thesis proposes a replicable decision-making framework to guide the retrofit of educational buildings. The framework is designed to help policymakers, architects, and engineers evaluate trade-offs between technical feasibility, and environmental impact, supporting optimized solutions tailored to local contexts. The findings demonstrate that energy-efficient retrofitting of schools, when approached holistically, can deliver deep energy savings, operational resilience, and a meaningful contribution to long-term sustainability objectives.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Ghorbani_Excutive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Excutive Summary
Dimensione
817.82 kB
Formato
Adobe PDF
|
817.82 kB | Adobe PDF | Visualizza/Apri |
2025_07_Ghorbani_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
7.17 MB
Formato
Adobe PDF
|
7.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240095