Cardiac fibrosis, a hallmark of heart failure, involves excessive extracellular matrix (ECM) deposition driven by fibroblast-to-myofibroblast transition under mechanical and biochem- ical cues. This study aimed to develop and characterize advanced in vitro models of car- diac fibrosis using custom-designed microfluidic platforms. Primary human ventricular cardiac fibroblasts (CF) were cultured alone or co-cultured with macrophages (M0) to simulate fibrotic microenvironments. A range of mechanical (10% stretch or 10% and 30% compression) and biochemical (TGFβ, IFNγ) stimulations were applied to evaluate their impact on ECM remodeling and immune modulation. Immunofluorescence staining of fibronectin, COL IA2, αSMA, and macrophage polariza- tion markers (CD86, CD206) revealed that fibrotic activation was not uniformly driven by external stimuli, with static cultures in some cases showing stronger marker expres- sion which was possibly due to pre-activation of fibroblasts. Additionally, Co-culture conditions further highlighted macrophage and fibroblast crosstalk influencing fibrosis progression. The results underscore the importance of multicellular, mechanically dy- namic models to better replicate in vivo fibrotic remodeling, and propose experimental refinements including TGFβ inhibition during expansion, PCR-based validation, and op- timized imaging protocolsto improve biological fidelity and analytical robustness in future fibrosis modeling.
La fibrosi cardiaca, un segno distintivo dell’insufficienza cardiaca, comporta un’eccessiva deposizione di matrice extracellulare (ECM) indotta dalla transizione da fibroblasti a miofibroblasti sotto stimoli meccanici e biochimici. Questo studio mirava a sviluppare e caratterizzare modelli avanzati in vitro di fibrosi cardiaca utilizzando piattaforme mi- crofluidiche progettate su misura. Fibroblasti cardiaci ventricolari umani primari sono stati coltivati da soli o co-coltivati con macrofagi M0 per simulare microambienti fi- brotici. Sono state applicate diverse stimolazioni meccaniche (allungamento del 10% o compressione del 10% e del 30%) e biochimiche (TGFβ, IFNγ) per valutarne l’impatto sul rimodellamento dell’ECM e sulla modulazione immunitaria. La colorazione con immunofluorescenza di fibronectina, COL IA2, αSMA e marcatori di polarizzazione dei macrofagi (CD86, CD206) ha rivelato che l’attivazione fibrotica non era uniformemente guidata da stimoli esterni, con colture statiche che in alcuni casi mostra- vano una maggiore espressione del marcatore, probabilmente dovuta alla preattivazione dei fibroblasti. Inoltre, le condizioni di co-coltura hanno ulteriormente evidenziato l’in- fluenza del crosstalk macrofago-fibroblasto sulla progressione della fibrosi. I risultati sot- tolineano l’importanza di modelli multicellulari meccanicamente dinamici per replicare meglio il rimodellamento fibrotico in vivo e propongono perfezionamenti sperimentali, tra cui l’inibizione del TGFβ durante l’espansione, la validazione basata sulla PCR e proto- colli di imaging ottimizzati, per migliorare la fedeltà biologica e la robustezza analitica nella futura modellazione della fibrosi.
Modeling cardiac fibrosis processes by investigating stimulations and incorporating immune components in a beating heart-on-chip
Ayati, Nazanin
2024/2025
Abstract
Cardiac fibrosis, a hallmark of heart failure, involves excessive extracellular matrix (ECM) deposition driven by fibroblast-to-myofibroblast transition under mechanical and biochem- ical cues. This study aimed to develop and characterize advanced in vitro models of car- diac fibrosis using custom-designed microfluidic platforms. Primary human ventricular cardiac fibroblasts (CF) were cultured alone or co-cultured with macrophages (M0) to simulate fibrotic microenvironments. A range of mechanical (10% stretch or 10% and 30% compression) and biochemical (TGFβ, IFNγ) stimulations were applied to evaluate their impact on ECM remodeling and immune modulation. Immunofluorescence staining of fibronectin, COL IA2, αSMA, and macrophage polariza- tion markers (CD86, CD206) revealed that fibrotic activation was not uniformly driven by external stimuli, with static cultures in some cases showing stronger marker expres- sion which was possibly due to pre-activation of fibroblasts. Additionally, Co-culture conditions further highlighted macrophage and fibroblast crosstalk influencing fibrosis progression. The results underscore the importance of multicellular, mechanically dy- namic models to better replicate in vivo fibrotic remodeling, and propose experimental refinements including TGFβ inhibition during expansion, PCR-based validation, and op- timized imaging protocolsto improve biological fidelity and analytical robustness in future fibrosis modeling.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Ayati_Thesis_01.pdf
non accessibile
Descrizione: Thesis Report
Dimensione
10.28 MB
Formato
Adobe PDF
|
10.28 MB | Adobe PDF | Visualizza/Apri |
2025_07_Ayati_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240123