The ITER project (International Thermonuclear Experimental Reactor) is the largest and most advanced experimental facility ever built to demonstrate the feasibility of nuclear fusion as a large-scale and carbon-free energy source. Its successful operation relies on a vast network of diagnostic systems, which monitor plasma conditions through a variety of optical, magnetic, and spectroscopic instruments. Many of these diagnostics make use of First Mirrors (FMs)—optical components placed inside the vacuum vessel and directly exposed to the plasma environment—to collect and redirect light to detectors located outside the tokamak. Due to their position, First Mirrors are vulnerable to contamination from plasma–material interaction (PMI). Among the main sources of contamination is boronization, a conditioning procedure widely used in fusion devices to coat plasma-facing surfaces with a thin layer of boron, which improves plasma performance by acting as an oxygen getter. However, during plasma discharges, boron and other elements can erode, migrate, and redeposit on exposed optical surfaces. The formation of these contaminant layers—often heterogeneous and with variable chemical and morphological properties—leads to a gradual degradation of mirror reflectivity, reducing diagnostic accuracy and reliability. As ITER will operate over thousands of plasma pulses, it becomes crucial to ensure that diagnostic mirrors remain clean and functional throughout their lifetime. For this reason, the development of effective in situ cleaning techniques and a better understanding of the properties of redeposited films are essential for the long-term maintenance of optical systems in fusion reactors. This thesis is situated within this framework and aims to support the long-term operability of optical diagnostics by investigating both the formation and removal of contaminant layers on mirror surfaces. To simulate the conditions of First Mirrors, boron-based films were deposited on platinum substrates using magnetron sputtering. The chemical, morphological, and optical characterization of these layers was conducted to understand their composition, structure, and impact on reflectivity. A particular focus was placed on films of pure boro, boron–tungsten, boron–oxygen, and boron–deuterium, which are expected to be among the most representative forms of redeposition in ITER. The experimental campaign was carried out at the Department of Physics of the University of Basel. Film deposition and chemical analysis were performed in situ, using X-ray Photoelectron Spectroscopy (XPS) without breaking vacuum conditions. Plasma cleaning was conducted with a Capacitively Coupled Radio Frequency (CC RF) plasma source, using different gases (argon, helium, and deuterium) under controlled parameters. In particular, argon proved highly effective but potentially damaging to the substrate, while helium and deuterium, although non-erosive to the substrate, were effective in removing boron but not tungsten. XPS measurements were used to monitor the composition of the films and to evaluate the sputtering effectiveness after each cleaning step. In parallel, the morphological characterization was performed using Scanning Electron Microscopy (SEM) and spectrophotometric measurements to evaluate both the surface morphology of the films and the evolution of the reflectivity of the mirror substrate after the cleaning process. In particular, boron-containing films were found to exhibit absorption peaks in the visible and near-infrared regions—precisely the spectral ranges used by key optical diagnostics—making these contaminants especially critical for measurement accuracy. The study demonstrated clear correlations between film composition, surface structure, and optical degradation, and identified the erosion behaviors of different plasma species. These findings were then applied to a tokamak-derived contamination: a sample exposed inside the EAST tokamak and cleaned using an optimized Ar+D\textsubscript{2} discharge. The successful removal of the contamination layer, together with the partial recovery of optical properties, confirmed the potential of the developed methods for fusion-relevant scenarios. This thesis contributes to a detailed investigation of contaminant films forming on the surface of First Mirrors, addressing chemical, morphological, and optical properties, and proposes plasma-assisted cleaning as a viable solution to maintain diagnostic reliability by removing contaminant layers. Moreover, through the experimental campaign carried out with different gases and process parameters, it provides a solid foundation for the exploration and optimization of this technique for ITER and next-generation fusion devices.
Il progetto ITER (International Thermonuclear Experimental Reactor) rappresenta il più grande e avanzato impianto sperimentale mai costruito per dimostrare la fattibilità della fusione nucleare come fonte di energia su larga scala e priva di emissioni di carbonio. Il suo funzionamento si basa su una vasta rete di sistemi diagnostici, progettati per monitorare le condizioni del plasma attraverso strumenti ottici, magnetici e spettroscopici. Molte di queste diagnostiche si avvalgono dei cosiddetti First Mirrors, componenti ottici posizionati all’interno della camera a vuoto e direttamente esposti all’ambiente di plasma, con il compito di raccogliere e riflettere la luce verso i rivelatori collocati all’esterno del tokamak. A causa della loro posizione, i First Mirrors sono particolarmente vulnerabili alla contaminazione generata dall’interazione plasma-materiale. Una delle principali fonti di contaminazione è la boronizzazione, una procedura di condizionamento comunemente impiegata nei dispositivi a fusione per rivestire le superfici esposte al plasma con un sottile strato di boro, al fine di migliorare le prestazioni del plasma grazie alla sua funzione di cattura dell’ossigeno. Tuttavia, durante le scariche di plasma, il boro e altri elementi possono erodere, migrare e ridepositarsi sulle superfici ottiche esposte. La formazione di questi strati contaminanti, spesso eterogenei e con proprietà chimiche e morfologiche variabili, porta a una graduale degradazione della riflettività degli specchi, compromettendo l’accuratezza e l’affidabilità delle misure diagnostiche. Poiché ITER opererà per migliaia di impulsi di plasma, diventa fondamentale garantire che gli specchi diagnostici restino puliti e funzionali nel lungo termine. Per questo motivo, lo sviluppo di tecniche di pulizia efficaci, insieme a una comprensione approfondita delle proprietà dei film ridistribuiti, è essenziale per la manutenzione degli apparati ottici nei reattori a fusione. Questa tesi si inserisce in questo contesto e mira a supportare la durabilità delle diagnostiche ottiche attraverso lo studio sia della formazione che della rimozione degli strati contaminanti sulle superfici speculari. Per simulare le condizioni operative dei First Mirrors, sono stati depositati film a base di boro su substrati di platino mediante magnetron sputtering. La caratterizzazione chimica, morfologica e ottica di questi film è stata ese guita al fine di comprenderne la composizione, la struttura e l’impatto sulla riflettività. Particolare attenzione è stata rivolta ai film di puro boro, boro-tungsteno, boro-ossigeno e boro-deuterio, ritenuti rappresentativi dei principali meccanismi di contaminazione in ITER. La campagna sperimentale è stata condotta presso il Dipartimento di Fisica dell’Università di Basilea. I film sono stati depositati e analizzati in condizioni di vuoto, tramite spettroscopia fotoelettronica a raggi X (XPS). La pulizia al plasma è stata effettuata utilizzando una sorgente di plasma di radiofrequenza accoppiato capacitamente, impiegando diversi gas di processo (argon, elio e deuterio) sotto parametri controllati. In particolare, l’argon si è dimostrato molto efficace ma potenzialmente dannoso per il substrato, mentre elio e deuterio, pur non essendo erosivi nei confronti del substrato, hanno rimosso efficacemente il boro ma non il tungsteno. Le misure XPS sono state utilizzate per monitorare la composizione dei film e valutare l’efficacia dello sputtering dopo ciascun trattamento. Parallelamente, le caratterizzazioni morfologiche e ottiche sono state condotte mediante microscopia elettronica a scansione (SEM) e misure spettrofotometriche, con l’obiettivo di analizzare sia la morfologia superficiale dei film sia l’evoluzione della riflettività del substrato speculare dopo il processo di pulizia. In particolare, è stato osservato che i film contenenti boro presentano picchi di assorbimento nel visibile e nel vicino infrarosso, proprio nelle regioni spettrali utilizzate da diagnostiche ottiche cruciali, rendendo tali contaminazioni particolarmente critiche per l’accuratezza delle misure. Lo studio ha evidenziato correlazioni chiare tra composizione dei film, struttura superficiale e degrado ottico, e ha permesso di identificare i diversi comportamenti erosivi dei gas plasma impiegati. Tali risultati sono stati infine applicati a un caso realistico: un campione esposto all’interno del tokamak EAST e successivamente sottoposto a pulizia con una scarica ottimizzata in miscela Ar+D2. La rimozione completa dello strato contaminante e il parziale recupero delle proprietà ottiche hanno confermato il potenziale delle metodologie sviluppate in condizioni compatibili con gli scenari operativi della fusione. Questo lavoro di tesi contribuisce a fornire un’analisi dettagliata dei film contaminanti che si formano sulla superficie dei First Mirrors, affrontandone gli aspetti chimici, morfologici e ottici, e proponendo il plasma assisted cleaning come una soluzione promettente per recuperare e preservare le prestazioni ottiche di questi componenti. Inoltre, attraverso la campagna sperimentale condotta con diversi gas e parametri di processo, il lavoro offre una base solida per l’esplorazione e l’ottimizzazione di questa tecnica in vista dell’applicazione in ITER e nei futuri dispositivi a fusione.
Investigation and plasma sputtering of contaminants films affecting first mirrors in fusion devices
Lopopolo, Nicolò
2024/2025
Abstract
The ITER project (International Thermonuclear Experimental Reactor) is the largest and most advanced experimental facility ever built to demonstrate the feasibility of nuclear fusion as a large-scale and carbon-free energy source. Its successful operation relies on a vast network of diagnostic systems, which monitor plasma conditions through a variety of optical, magnetic, and spectroscopic instruments. Many of these diagnostics make use of First Mirrors (FMs)—optical components placed inside the vacuum vessel and directly exposed to the plasma environment—to collect and redirect light to detectors located outside the tokamak. Due to their position, First Mirrors are vulnerable to contamination from plasma–material interaction (PMI). Among the main sources of contamination is boronization, a conditioning procedure widely used in fusion devices to coat plasma-facing surfaces with a thin layer of boron, which improves plasma performance by acting as an oxygen getter. However, during plasma discharges, boron and other elements can erode, migrate, and redeposit on exposed optical surfaces. The formation of these contaminant layers—often heterogeneous and with variable chemical and morphological properties—leads to a gradual degradation of mirror reflectivity, reducing diagnostic accuracy and reliability. As ITER will operate over thousands of plasma pulses, it becomes crucial to ensure that diagnostic mirrors remain clean and functional throughout their lifetime. For this reason, the development of effective in situ cleaning techniques and a better understanding of the properties of redeposited films are essential for the long-term maintenance of optical systems in fusion reactors. This thesis is situated within this framework and aims to support the long-term operability of optical diagnostics by investigating both the formation and removal of contaminant layers on mirror surfaces. To simulate the conditions of First Mirrors, boron-based films were deposited on platinum substrates using magnetron sputtering. The chemical, morphological, and optical characterization of these layers was conducted to understand their composition, structure, and impact on reflectivity. A particular focus was placed on films of pure boro, boron–tungsten, boron–oxygen, and boron–deuterium, which are expected to be among the most representative forms of redeposition in ITER. The experimental campaign was carried out at the Department of Physics of the University of Basel. Film deposition and chemical analysis were performed in situ, using X-ray Photoelectron Spectroscopy (XPS) without breaking vacuum conditions. Plasma cleaning was conducted with a Capacitively Coupled Radio Frequency (CC RF) plasma source, using different gases (argon, helium, and deuterium) under controlled parameters. In particular, argon proved highly effective but potentially damaging to the substrate, while helium and deuterium, although non-erosive to the substrate, were effective in removing boron but not tungsten. XPS measurements were used to monitor the composition of the films and to evaluate the sputtering effectiveness after each cleaning step. In parallel, the morphological characterization was performed using Scanning Electron Microscopy (SEM) and spectrophotometric measurements to evaluate both the surface morphology of the films and the evolution of the reflectivity of the mirror substrate after the cleaning process. In particular, boron-containing films were found to exhibit absorption peaks in the visible and near-infrared regions—precisely the spectral ranges used by key optical diagnostics—making these contaminants especially critical for measurement accuracy. The study demonstrated clear correlations between film composition, surface structure, and optical degradation, and identified the erosion behaviors of different plasma species. These findings were then applied to a tokamak-derived contamination: a sample exposed inside the EAST tokamak and cleaned using an optimized Ar+D\textsubscript{2} discharge. The successful removal of the contamination layer, together with the partial recovery of optical properties, confirmed the potential of the developed methods for fusion-relevant scenarios. This thesis contributes to a detailed investigation of contaminant films forming on the surface of First Mirrors, addressing chemical, morphological, and optical properties, and proposes plasma-assisted cleaning as a viable solution to maintain diagnostic reliability by removing contaminant layers. Moreover, through the experimental campaign carried out with different gases and process parameters, it provides a solid foundation for the exploration and optimization of this technique for ITER and next-generation fusion devices.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Lopopolo_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo della tesi
Dimensione
39.42 MB
Formato
Adobe PDF
|
39.42 MB | Adobe PDF | Visualizza/Apri |
2025_07_Lopopolo_Executive_Summary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240129