This work focuses on the modeling and the characterization of a piezoelectric Micro machined Ultrasound Transducer (pMUT) within the framework of the Italian national project MicroBioNIC (PRIN 2022), carried out in collaboration with Politecnico di Torino and University of Catania. The goal of the project is to design a pMUT capable of de livering wireless power to implantable biosensors while satisfying stringent performance requirements. Specifically, the device must be able to supply a minimum of 100 nW of power at a distance of 5 mm and generate at least 100 mV, all within a compact foot print of 100×100 µm2, making it suitable for integration into next-generation biomedical implants. To ensure bio-compatibility and compliance with environmental standards, a material alternative to the more diffused lead zirconate titanate that contains toxic lead, is here employed, namely the aluminum nitride enriched with scandium (ScAlN). The core of the thesis centers on the evaluation of various pMUT layouts. A detailed 3D model of the pMUT was developed and analyzed across multiple configurations op erating as a receiver. Furthermore, the feasibility of using pMUT arrays as transmitters was explored, with a particular focus on minimizing cross-talk between array elements. All designs were meshed and simulated using COMSOL Multiphysics, applying expedient mesh techniques to significantly lower the computational complexity while maintaining accuracy of the results. The analyses suggest an initial feasibility of using these devices to store energy, and receive/send signals to digital nanoelectronics circuits.
Questo lavoro si concentra sulla modellazione e caratterizzazione di un trasduttore ultra sonico piezoelettrico microlavorato (pMUT), sviluppato nell’ambito del progetto nazionale MicroBioNIC in collaborazione con il Politecnico di Torino e l’Università di Catania. L’obiettivo è di sviluppare un dispositivo in grado di fornire alimentazione wireless a biosensori impiantabili rispettando requisiti prestazionali stringenti: erogare una potenza minima di 100 nW a 5 mm di distanza e generare almeno 100 mV di tensione, con un ingombro di soli 100 × 100 µm2, compatibile con impianti biomedici di nuova gener azione. Per garantire biocompatibilità e conformità alle normative ambientali, si è scelto di adottare un materiale alternativo al più diffuso zirconato titanato di piombo (PZT), che contiene piombo tossico, precisamente il nitruro di alluminio drogato con scandio (ScAlN). Il fulcro della tesi è la valutazione di diverse configurazioni di pMUT: è stato sviluppato un modello 3D dettagliato del dispositivo e analizzato in varie modalità di ricezione. Inoltre, è stata esplorata la fattibilità di array di pMUT in trasmissione, con particolare atten zione alla minimizzazione del cross-talk tra elementi. Tutti i layout sono stati discretizzati e simulati in COMSOL Multiphysics, impiegando tecniche opportune di discretizzazione per ridurre la complessità computazionale senza compromettere l’accuratezza dei risul tati. Le analisi suggeriscono una prima fattibilità dell’impiego di questi dispositivi per immagazzzinare energia e ricevere/inviare segnali a circuiti di nanoelettronica digitale
Energy harvesting for a microscale biosensing device via piezoelectric micromachined ultrasonic transducers
Morh, Mamoun
2024/2025
Abstract
This work focuses on the modeling and the characterization of a piezoelectric Micro machined Ultrasound Transducer (pMUT) within the framework of the Italian national project MicroBioNIC (PRIN 2022), carried out in collaboration with Politecnico di Torino and University of Catania. The goal of the project is to design a pMUT capable of de livering wireless power to implantable biosensors while satisfying stringent performance requirements. Specifically, the device must be able to supply a minimum of 100 nW of power at a distance of 5 mm and generate at least 100 mV, all within a compact foot print of 100×100 µm2, making it suitable for integration into next-generation biomedical implants. To ensure bio-compatibility and compliance with environmental standards, a material alternative to the more diffused lead zirconate titanate that contains toxic lead, is here employed, namely the aluminum nitride enriched with scandium (ScAlN). The core of the thesis centers on the evaluation of various pMUT layouts. A detailed 3D model of the pMUT was developed and analyzed across multiple configurations op erating as a receiver. Furthermore, the feasibility of using pMUT arrays as transmitters was explored, with a particular focus on minimizing cross-talk between array elements. All designs were meshed and simulated using COMSOL Multiphysics, applying expedient mesh techniques to significantly lower the computational complexity while maintaining accuracy of the results. The analyses suggest an initial feasibility of using these devices to store energy, and receive/send signals to digital nanoelectronics circuits.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Morh_Tesi.pdf
solo utenti autorizzati a partire dal 02/07/2028
Descrizione: tesi
Dimensione
8.37 MB
Formato
Adobe PDF
|
8.37 MB | Adobe PDF | Visualizza/Apri |
2025_07_Morh_executive summary.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: executive summary
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240132