The competition between sedimentation and crystallization in colloidal systems has received limited attention in past research, mostly focusing on three-dimensional systems dependence on volume fractions. A detailed study of how the settling regime influences the structure of the sediment is still missing. In particular, when transitioning to a two-dimensional system of hard disks, the situation becomes even more complex, as the very concept of disorder requires to be redefined due to the intrinsic absence of geometric frustration, and the individuation of a ‘randomly packed’ metastable phase still remains a foggy theoretical concept. On the other hand, effectively confining a suspension to two dimensions offers the significant advantage of enabling direct observation, and control, of particles’ motion and aggregation using simple optical microscopy setups. Within this thesis work an experimental campaign was therefore designed to further shed light on the phenomena presented. For this purpose, a colloidal suspension of monodisperse silica hard spheres was studied under confined (2D) geometry. First, a tiltable optical microscopy setup was designed to efficiently track and monitor the particles. On top of that, the method adopted for the creation of the cell used to confine the particles in two dimensions was refined by systematically operating on both the suspension and the materials used to enclose it. Images obtained from samples left to settle across a wide Péclet number range, namely spanning two orders of magnitude, were post-processed and analyzed using a custom MATLAB code, yielding data concerning both the particle dynamics and the structure, topology, and morphology of the sediments. The results reveal an intriguing and unexpected behavior. A transition with a clear threshold at low sedimentation rates identifies two distinct types of crystalline structures: those formed at low Péclet numbers, resembling a polycrystalline ‘mosaic’ of small grains, and those consisting of large crystals with clear epitaxial growth at higher Péclet numbers. A detailed analysis of the phenomenon is provided in relation to the existing theoretical framework.
La competizione tra sedimentazione e cristallizzazione in sistemi colloidali è stata oggetto di pochi studi in passato, occupatisi per lo più della dipendenza dalla frazione volumetrica di sistemi tridimensionali. Uno studio dettagliato di come il regime di sedimentazione influenzi la struttura del sedimento stesso, è ancora mancante. In particolare, passando ad un sistema bidimensionale di dischi rigidi, la situazione diventa ancora più complessa, in quanto il concetto stesso di disordine necessita di una riformulazione data la mancanza intrinseca di frustrazione geometrica, e l’individuazione di una fase metastabile con ‘impacchettamento disordinato’ rimane un concetto teorico nebuloso. D’altro canto, confinare effettivamente una sospensione su due sole dimensioni porta al notevole vantaggio di poter osservare, e soprattutto controllare, direttamente il moto e l’accumulo delle particelle tramite semplici apparati di microscopia ottica. Questo lavoro di tesi si inserisce dunque nel seguente contesto, sviluppando una campagna sperimentale atta a gettare luce sui fenomeni sovracitati. A questo proposito una sospensione colloidale di sfere rigide di silica monodisperse è stata analizzata in geometria confinata (2D). In primo luogo si è vista la progettazione di un apparato di microscopia ottica inclinabile in grado di tracciare e monitorare le particelle in maniera efficiente. In aggiunta, la tecnica usata per creare la cella destinata a confinare le particelle su due dimensioni è stata affinata, agendo metodologicamente sulla sospensione e sui materiali usati per racchiuderla. Le immagini, ottenute da campioni lasciati sedimentare su di un range di Péclet ampio due ordini di grandezza, sono state quindi post-processate e analizzate attraverso lo sviluppo di un codice computazionale in linguaggio MATLAB, ottenendo sia dati relativi alla dinamica delle parti- celle, che alla struttura, topologia, e morfologia dei sedimenti. I risultati mostrano comportamenti interessanti quanto inaspettati. Una transizione, con una netta soglia a bassa velocità di sedimentazione, individua due tipi possibili di strutture cristalline: quelle formatesi a bassi Péclet, paragonabili ad un ‘mosaico’ policristallino fatto di piccoli grani, e quelle caratterizzate da estesi cristalli con evidente crescita epitassiale a Péclet più elevati. Questo particolare fenomeno fisico, alla luce di quanto trovato, viene quindi ampiamente descritto e discusso cercando di inserirlo all’interno del corrente quadro teorico.
Colloidal Connect 4: how particles settle into order in 2D
Marchesi, Davide
2024/2025
Abstract
The competition between sedimentation and crystallization in colloidal systems has received limited attention in past research, mostly focusing on three-dimensional systems dependence on volume fractions. A detailed study of how the settling regime influences the structure of the sediment is still missing. In particular, when transitioning to a two-dimensional system of hard disks, the situation becomes even more complex, as the very concept of disorder requires to be redefined due to the intrinsic absence of geometric frustration, and the individuation of a ‘randomly packed’ metastable phase still remains a foggy theoretical concept. On the other hand, effectively confining a suspension to two dimensions offers the significant advantage of enabling direct observation, and control, of particles’ motion and aggregation using simple optical microscopy setups. Within this thesis work an experimental campaign was therefore designed to further shed light on the phenomena presented. For this purpose, a colloidal suspension of monodisperse silica hard spheres was studied under confined (2D) geometry. First, a tiltable optical microscopy setup was designed to efficiently track and monitor the particles. On top of that, the method adopted for the creation of the cell used to confine the particles in two dimensions was refined by systematically operating on both the suspension and the materials used to enclose it. Images obtained from samples left to settle across a wide Péclet number range, namely spanning two orders of magnitude, were post-processed and analyzed using a custom MATLAB code, yielding data concerning both the particle dynamics and the structure, topology, and morphology of the sediments. The results reveal an intriguing and unexpected behavior. A transition with a clear threshold at low sedimentation rates identifies two distinct types of crystalline structures: those formed at low Péclet numbers, resembling a polycrystalline ‘mosaic’ of small grains, and those consisting of large crystals with clear epitaxial growth at higher Péclet numbers. A detailed analysis of the phenomenon is provided in relation to the existing theoretical framework.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Marchesi_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
2025_07_Marchesi_Tesi.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
11.36 MB
Formato
Adobe PDF
|
11.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240144