The numerous advantages of the new generation (GEN-IV) of fast nuclear reactors for electricity production have stimulated intense research efforts aimed at studying and designing these systems, with the goal of overcoming the challenges that still hinder their commercial deployment. In particular, for Lead-cooled Fast Reactors (LFRs), one of the main open issues concerns the corrosion of steels in high-temperature Heavy Liquid Metals (HLMs). Among the various protection strategies currently under investigation, one of the most promising involves coating the steel with a dense and compact film of an advanced ceramic material, specifically, amorphous alumina (a-Al₂O₃), deposited via Pulsed Laser Deposition (PLD). The overarching goal of this research is to establish a reliable experimental and analytical framework for applying Electrochemical Impedance Spectroscopy (EIS) in a room-temperature liquid metal environment (Galinstan®), with the aim of characterizing and performing quality control on oxide-coated materials. To this end, a set of 14 AISI 316L steel tubes was prepared and used as working electrodes inside an electrochemical cell. For each sample, the full coating process was carried out: from substrate preparation by electropolishing campaign, to the actual deposition through fine-tuning of laser and chamber parameters, and finally to preliminary characterization using established techniques such as Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), and X-Ray Diffraction (XRD). These samples were produced in multiple batches, including one with varying coating thicknesses and another with intentional damage to simulate improper handling, thermal shocks, and deformation of the cladding caused by internal pressurization. The acquisition and analysis of Nyquist and Bode plots demonstrated that EIS in liquid metal at room temperature is capable of providing detailed, repeatable, and reliable information across a wide range of scenarios, enabling the assessment of coating thickness, its integrity or failure, and the overall performance of steel isolation from the external liquid metal environment.
I numerosi punti di forza della nuova generazione (GEN-IV) di reattori nucleari veloci per la produzione di energia elettrica hanno stimolato un’intensa attività di ricerca finalizzata allo studio e alla progettazione di tali sistemi, con l’obiettivo di risolvere le problematiche che ancora oggi ne ostacolano la commercializzazione. In particolare, per quanto riguarda i reattori veloci raffreddati a piombo (LFR), uno dei principali temi aperti riguarda la corrosione degli acciai in metalli liquidi pesanti (HLM) ad alta temperatura. Tra le diverse tecniche di protezione attualmente oggetto di studio, una delle più promettenti consiste nel rivestimento dell’acciaio con un film denso e compatto di un materiale ceramico avanzato, in particolare allumina amorfa (a-Al₂O₃), ottenuto mediante deposizione laser pulsata (PLD). L’obiettivo principale di questa ricerca è lo sviluppo di un solido approccio sperimentale e analitico per l'applicazione della spettroscopia di impedenza elettrochimica (EIS) in metallo liquido a temperatura ambiente (Galinstan®), con finalità di caratterizzazione e controllo qualità di materiali rivestiti con ossidi. A tal fine è stato preparato un set di 14 tubi in acciaio AISI 316L, impiegati come elettrodi di lavoro all’interno di una cella elettrochimica. Per ciascun campione è stata curata l’intera procedura di deposizione del rivestimento: dalla preparazione preliminare del substrato tramite campagna di elettrolucidatura, alla deposizione vera e propria mediante regolazione dei parametri del laser e della camera di deposizione, fino alla caratterizzazione preliminare tramite metodologie consolidate quali microscopia elettronica a scansione (SEM), spettroscopia a dispersione di energia dei raggi X (EDX) e diffrazione a raggi X (XRD). Tali campioni sono stati prodotti in vari lotti, tra cui uno a diversi spessori, e uno introducendo danneggiamenti per simulare maneggiamenti impropri, shock termici, e deformazioni della barra di combustibile causate da pressurizzazione interna. L’acquisizione e l’analisi dei diagrammi di Nyquist e Bode hanno dimostrato che la tecnica EIS in metallo liquido a temperatura ambiente è in grado di fornire informazioni dettagliate, ripetibili e affidabili in un’ampia gamma di scenari, consentendo di valutare lo spessore del rivestimento, la sua integrità o compromissione, e le prestazioni complessive di isolamento dell’acciaio dal metallo liquido esterno.
Electrochemical and structural characterization of advanced ceramic coatings for lead-cooled fast reactors (LFRs)
TORNAGHI, GIOELE
2024/2025
Abstract
The numerous advantages of the new generation (GEN-IV) of fast nuclear reactors for electricity production have stimulated intense research efforts aimed at studying and designing these systems, with the goal of overcoming the challenges that still hinder their commercial deployment. In particular, for Lead-cooled Fast Reactors (LFRs), one of the main open issues concerns the corrosion of steels in high-temperature Heavy Liquid Metals (HLMs). Among the various protection strategies currently under investigation, one of the most promising involves coating the steel with a dense and compact film of an advanced ceramic material, specifically, amorphous alumina (a-Al₂O₃), deposited via Pulsed Laser Deposition (PLD). The overarching goal of this research is to establish a reliable experimental and analytical framework for applying Electrochemical Impedance Spectroscopy (EIS) in a room-temperature liquid metal environment (Galinstan®), with the aim of characterizing and performing quality control on oxide-coated materials. To this end, a set of 14 AISI 316L steel tubes was prepared and used as working electrodes inside an electrochemical cell. For each sample, the full coating process was carried out: from substrate preparation by electropolishing campaign, to the actual deposition through fine-tuning of laser and chamber parameters, and finally to preliminary characterization using established techniques such as Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), and X-Ray Diffraction (XRD). These samples were produced in multiple batches, including one with varying coating thicknesses and another with intentional damage to simulate improper handling, thermal shocks, and deformation of the cladding caused by internal pressurization. The acquisition and analysis of Nyquist and Bode plots demonstrated that EIS in liquid metal at room temperature is capable of providing detailed, repeatable, and reliable information across a wide range of scenarios, enabling the assessment of coating thickness, its integrity or failure, and the overall performance of steel isolation from the external liquid metal environment.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Tornaghi_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
13.58 MB
Formato
Adobe PDF
|
13.58 MB | Adobe PDF | Visualizza/Apri |
2025_07_Tornaghi_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.67 MB
Formato
Adobe PDF
|
1.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240145