In this thesis, we investigate the numerical modeling of acoustic wave propagation in bounded domains, with specific application to simulations involving piezoelectric micromachined ultrasonic transducers (PMUTs), which are used to generate waves within an acoustic medium with specific density ρ and speed of sound c that subsequently propagate into a surrounding acoustic domain with different ρ and c. A major computational challenge in this context is the treatment of artificial boundaries, which, if not properly handled, generate spurious reflections that degrade the accuracy of the simulation. To address this, we study and implement absorbing boundary conditions (ABCs) of both first and second order within the framework of the high-performance simulation code SPEED. The mathematical formulation is based on a symmetric elastoacoustic system expressed in terms of displacement and velocity potential. The spatial discretization is performed using a Discontinuous Galerkin Spectral Element (DGSE) method, chosen for its flexibility and high-order accuracy on complex geometries. Time integration is carried out using an explicit Newmark predictor-corrector staggered scheme. First order ABCs, already implemented in SPEED, are revisited and optimized using a matrix-free approach. Subsequently, second order ABCs are derived from their theoretical formulation and implemented into the framework via a penalty residual method, again leveraging the matrix-free approach. The proposed methodology is validated through a series of numerical experiments. Both the first and second order ABC implementations are evaluated in terms of accuracy and computational cost on a benchmark problem. The work contributes a robust and extensible framework for simulating acoustic wave propagation problem.
In questa tesi viene affrontata la modellazione numerica della propagazione di onde acustiche in domini limitati, con particolare riferimento a simulazioni che coinvolgono micro trasduttori ultrasonici piezoelettrici (PMUT). I quali vengono impiegati per generare onde all’interno di un mezzo acustico, con densità ρ e velocità del suono c, che si propagano successivamente in un dominio acustico circostante con diversi ρ e c. Una delle principali difficoltà, in termini computazionali, in questo contesto è rappresentata dal trattamento dei confini artificiali, che, se non gestiti correttamente, possono generare riflessioni spurie capaci di compromettere l’accuratezza della simulazione. Per risolvere questo problema, si studiano e implementano condizioni al contorno assorbenti (ABC) di primo e secondo ordine all’interno del codice di simulazione ad alte prestazioni SPEED. La formulazione matematica si basa su un sistema elastoacustico simmetrico, espresso in termini di spostamento e potenziale di velocità. La discretizzazione spaziale è realizzata tramite il metodo degli Elementi Spettrali Discontinui (DGSE), scelto per la sua flessibilità e l’elevata accuratezza su geometrie complesse. L’integrazione temporale è effettuata mediante uno schema esplicito predittore-correttore di Newmark a passo alternato. Le ABC di primo ordine, già presenti in SPEED, vengono riviste e ottimizzate tramite un approccio non algebrico. Le ABC di secondo ordine, invece, sono derivate dalla formulazione teorica e implementate tramite un metodo di penalizzazione del residuo, sempre utilizzando un approccio non algebrico. La metodologia proposta viene validata attraverso una serie di esperimenti numerici. L’implementazione delle ABC di primo e secondo ordine viene valutata in termini di accuratezza e costo computazionale su un caso acustico di riferimento. Questo lavoro fornisce un framework solido ed estensibile per la simulazione di problemi di propagazione di onde acustiche in domini limitati.
Absorbing boundary conditions for acoustic problems in the SPEED code
Renna, Alessandro
2024/2025
Abstract
In this thesis, we investigate the numerical modeling of acoustic wave propagation in bounded domains, with specific application to simulations involving piezoelectric micromachined ultrasonic transducers (PMUTs), which are used to generate waves within an acoustic medium with specific density ρ and speed of sound c that subsequently propagate into a surrounding acoustic domain with different ρ and c. A major computational challenge in this context is the treatment of artificial boundaries, which, if not properly handled, generate spurious reflections that degrade the accuracy of the simulation. To address this, we study and implement absorbing boundary conditions (ABCs) of both first and second order within the framework of the high-performance simulation code SPEED. The mathematical formulation is based on a symmetric elastoacoustic system expressed in terms of displacement and velocity potential. The spatial discretization is performed using a Discontinuous Galerkin Spectral Element (DGSE) method, chosen for its flexibility and high-order accuracy on complex geometries. Time integration is carried out using an explicit Newmark predictor-corrector staggered scheme. First order ABCs, already implemented in SPEED, are revisited and optimized using a matrix-free approach. Subsequently, second order ABCs are derived from their theoretical formulation and implemented into the framework via a penalty residual method, again leveraging the matrix-free approach. The proposed methodology is validated through a series of numerical experiments. Both the first and second order ABC implementations are evaluated in terms of accuracy and computational cost on a benchmark problem. The work contributes a robust and extensible framework for simulating acoustic wave propagation problem.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Renna.pdf
accessibile in internet per tutti
Dimensione
15.57 MB
Formato
Adobe PDF
|
15.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240184