While extensive studies on cuprates have shed light on High-Temperature SuperConductivity (HTSC), the detailed microscopic processes behind unconventional superconductivity are still only partially deciphered. In this context, thin films based on nickelates emerge as a promising alternative system for investigating these processes, offering opportunities to explore both the similarities and differences with cuprate materials. This study investigates the effect of uniaxial mechanical strain (applied through an ultra-high vacuum compatible device) on infinite-layer PrNiO2 thin film using Resonant Inelastic X-ray Scattering (RIXS), with a particular focus on the magnetic excitations i.e. magnons or spin waves. Unlike the biaxial strain induced by substrates—where compression seems to reduce magnon energy and tension increases it—the application of uniaxial compression leads to an increase in magnon energies in both the compressed and stretched directions. This behavior is interpreted by considering the rotation of the Ni/O planar coordination: the strain seems to align the Ni-O-Ni bonding angle to 180°, improving the orbital overlap between the Ni 3d and O 2p states and consequently strengthening the super exchange interaction. Variations in lattice parameters, which modify bond lengths, also contribute, albeit to a lesser extent. Furthermore, the effect observed with uniaxial strain is more pronounced than that obtained with epitaxial strain, suggesting that additional phenomena may limit the effectiveness of tuning the Ni-O-Ni angle in epitaxial growth. These results open new perspectives for engineering pressure and strain as tools to modulate the magnetic and electronic properties of complex materials.
Mentre studi approfonditi sui cuprati hanno fatto luce sui meccanismi responsabili della superconduttività ad alta temperatura (HTSC), i processi microscopici alla base della superconduttività non convenzionale sono ancora solo parzialmente decifrati. In questo contesto, i film sottili basati sui nichelati emergono come un sistema alternativo promettente per investigare questi processi, offrendo opportunità per esplorare sia le somiglianze che le differenze con i materiali a base di cuprati. In questo studio si indaga l’effetto della deformazione meccanica uniassiale (applicate tramite un dispositivo ultra-high vacuum compatibile) su film sottili a strati infiniti di PrNiO2, utilizzando la tecnica del Resonant Inelastic X-ray Scattering (RIXS), con un focus particolare sulle eccitazioni magnetiche i.e. magnoni o onde di spin. A differenza della deformazione biassiale indotta dai substrati—dove la compressione sembra ridurre l’energia dei magnoni e viceversa per l’elongazione—l’applicazione di una compressione uniassiale porta a un aumento delle energie dei magnoni sia nella direzione compressa che in quella tesa. Questo comportamento viene interpretato considerando la rotazione del coordinamento planare quadrato dei Ni/O: la deformazione sembrerebbe allineare l’angolo Ni-O-Ni a 180°, migliorando l’overlap orbitale tra gli stati Ni 3d e O 2p e conseguentemente rafforzando l’interazione di super-exchange. Le variazioni dei parametri reticolari, e la conseguente variazione delle lunghezze dei legami, contribuiscono anche al trend finale seppur in misura minore. Inoltre, l’effetto osservato tramite deformazione uniassiale risulta più pronunciato rispetto a quello ottenuto con la tensione epitassiale, suggerendo come fenomeni aggiuntivi (come la ricostruzione d’interfaccia) possano limitare l’efficacia della sintonizzazione dell’angolo Ni-O-Ni in crescita epitassiale. Tali risultati aprono nuove prospettive per l’ingegnerizzazione della pressione e della tensione superficiale come strumento per modulare le proprietà magnetiche ed elettroniche di materiali complessi.
Investigating strain-induced properties in Nickelate Superconductors via Resonant Inelastic X-Ray Scattering (RIXS)
Martino, Francesca
2024/2025
Abstract
While extensive studies on cuprates have shed light on High-Temperature SuperConductivity (HTSC), the detailed microscopic processes behind unconventional superconductivity are still only partially deciphered. In this context, thin films based on nickelates emerge as a promising alternative system for investigating these processes, offering opportunities to explore both the similarities and differences with cuprate materials. This study investigates the effect of uniaxial mechanical strain (applied through an ultra-high vacuum compatible device) on infinite-layer PrNiO2 thin film using Resonant Inelastic X-ray Scattering (RIXS), with a particular focus on the magnetic excitations i.e. magnons or spin waves. Unlike the biaxial strain induced by substrates—where compression seems to reduce magnon energy and tension increases it—the application of uniaxial compression leads to an increase in magnon energies in both the compressed and stretched directions. This behavior is interpreted by considering the rotation of the Ni/O planar coordination: the strain seems to align the Ni-O-Ni bonding angle to 180°, improving the orbital overlap between the Ni 3d and O 2p states and consequently strengthening the super exchange interaction. Variations in lattice parameters, which modify bond lengths, also contribute, albeit to a lesser extent. Furthermore, the effect observed with uniaxial strain is more pronounced than that obtained with epitaxial strain, suggesting that additional phenomena may limit the effectiveness of tuning the Ni-O-Ni angle in epitaxial growth. These results open new perspectives for engineering pressure and strain as tools to modulate the magnetic and electronic properties of complex materials.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Martino_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
16.93 MB
Formato
Adobe PDF
|
16.93 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Martino_Executive Summary_02.docx.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
1.48 MB
Formato
Adobe PDF
|
1.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240204