The sharp growth in railway traffic in recent years has highlighted the need to ensure ever-higher levels of reliability and safety for rail infrastructure. This requirement calls for the development of advanced monitoring systems for the overhead contact line (OCL). Among the components most exposed to wear and failure is the contact wire (CW), which can break owing to the cumulative wear produced by pantograph passage—an effect that is typically exacerbated by geometric imperfections or adverse environmental conditions that increase mechanical stress. A train running beneath a ruptured CW section can cause severe damage to both passengers and on-board equipment. This thesis analyses the feasibility of a continuous monitoring system aimed at the prompt detection of CW breakage, through real-time analysis of dynamic variables acquired by sensors installed at the tensioning ends of the line. The results are obtained from dynamic analyses carried out with a finite-element package. The monitoring strategy is built on a non-linear dynamic model of the catenary, implemented in Abaqus/CAE 2024, capable of reproducing large displacements, dropper slackening and the impulsive effects triggered by CW rupture. The quantities investigated include vertical, axial and lateral accelerations, displacements and variations in the axial tension of the CW. Particular emphasis is placed on locating and characterising the rupture signature, identified by negative peaks in axial tension and by energy variations in the vibratory response. Signal processing is performed by means of moving-window RMS analysis to enhance detection robustness in the presence of noise or non-critical transient events. Numerical results confirm that CW rupture can be detected with high reliability and that its position can be estimated with reasonable accuracy, even in realistic configurations that incorporate counterweight masses and support poles. Finally, the thesis provides practical guidelines for field implementation, recommending a combination of accelerometers and load cells and discussing the main challenges to be addressed during sensor installation and calibration.
L’aumento del traffico ferroviario degli ultimi anni ha segnalato l’esigenza di garantire una maggiore affidabilità e sicurezza delle infrastrutture ferroviarie. Tale necessità impone lo sviluppo di sistemi di monitoraggio avanzati per la linea aerea di contatto (OCL). Uno dei componenti maggiormente sottoposto a usura e rottura è il Contact Wire (CW). Tale componente può rompersi per causa dell’usura generata dal passaggio del pantografo, general mente peggiorata da imprecisione geometriche o condizioni climatiche che ne aumentano lo stress. Il passaggio del treno, sotto punti in cui il CW è rotto, può comportare gravi danni sia a persone che alla strumentazione stessa. In questa tesi si analizza la fattibilità un sistema di monitoraggio continuo orientato all’identificazione tempestiva di rotture del contact wire (CW), attraverso l’analisi in tempo reale di variabili dinamiche misurabili tramite sensori posti presso le estremità di regolazione. Tali risultati sono stati ottenuti tramite l’utilizzo di analisi dinamiche effettuate tramite software FEM. Il sistema si basa su un modello dinamico non lineare della catenaria, sviluppato tramite Abaqus/CAE 2024, in grado di simulare grandi spostamenti, il rilassamento dei pendini e gli effetti impulsivi della rottura del CW. Le grandezze considerate includono accelerazioni verticali, assiali e laterali, spostamenti e variazioni del tiro assiale del CW. Particolare attenzione è rivolta alla localizzazione e caratterizzazione del segnale di rottura, rappresentato da picchi negativi del tiro assiale e da variazioni energetiche nella risposta vibratoria. L’elaborazione dei segnali viene condotta attraverso l’analisi RMS su finestre temporali mobili, al fine di aumentare la robustezza del rilevamento in presenza di rumore o eventi transitori non critici. I risultati numerici confermano la possibilità di rilevare con buona affidabilità la rottura del CW e di stimarne approssimativamente la posizione, anche in configurazioni realistiche che includono masse di contrappeso e pali di sostegno. La tesi fornisce inoltre indicazioni pratiche per l’implementazione di un sistema di misura reale, suggerendo una combinazione di sensori di accelerazione e celle di carico, e discutendo le principali criticità da affrontare in fase di installazione e calibrazione.
Analysis and simulation of contact wire breakage in high-speed railway overhead contact lines to enhance safety and reliability
Castrichini, Carlo
2024/2025
Abstract
The sharp growth in railway traffic in recent years has highlighted the need to ensure ever-higher levels of reliability and safety for rail infrastructure. This requirement calls for the development of advanced monitoring systems for the overhead contact line (OCL). Among the components most exposed to wear and failure is the contact wire (CW), which can break owing to the cumulative wear produced by pantograph passage—an effect that is typically exacerbated by geometric imperfections or adverse environmental conditions that increase mechanical stress. A train running beneath a ruptured CW section can cause severe damage to both passengers and on-board equipment. This thesis analyses the feasibility of a continuous monitoring system aimed at the prompt detection of CW breakage, through real-time analysis of dynamic variables acquired by sensors installed at the tensioning ends of the line. The results are obtained from dynamic analyses carried out with a finite-element package. The monitoring strategy is built on a non-linear dynamic model of the catenary, implemented in Abaqus/CAE 2024, capable of reproducing large displacements, dropper slackening and the impulsive effects triggered by CW rupture. The quantities investigated include vertical, axial and lateral accelerations, displacements and variations in the axial tension of the CW. Particular emphasis is placed on locating and characterising the rupture signature, identified by negative peaks in axial tension and by energy variations in the vibratory response. Signal processing is performed by means of moving-window RMS analysis to enhance detection robustness in the presence of noise or non-critical transient events. Numerical results confirm that CW rupture can be detected with high reliability and that its position can be estimated with reasonable accuracy, even in realistic configurations that incorporate counterweight masses and support poles. Finally, the thesis provides practical guidelines for field implementation, recommending a combination of accelerometers and load cells and discussing the main challenges to be addressed during sensor installation and calibration.File | Dimensione | Formato | |
---|---|---|---|
22_07_25_Castrichini_executive_summary.pdf
accessibile in internet per tutti
Dimensione
573.09 kB
Formato
Adobe PDF
|
573.09 kB | Adobe PDF | Visualizza/Apri |
22_07_25_Castrichini_Tesi.pdf
accessibile in internet per tutti
Dimensione
10.09 MB
Formato
Adobe PDF
|
10.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240231