Cancer is one of the deadliest diseases worldwide, and in particular colorectal cancer (CRC) is among the most common and lethal. The main issue in the context of CRC is the lack of specific biomarkers to predict prognosis and effective, universal therapies. The tumor microenvironment (TME), composed of stromal and immunological components, plays a fundamental role in the development and progression of CRC. Therefore, it is necessary to develop personalized models to test therapies directly on patient cells, as tumor development and progression are strongly patient-specific. Research focuses on innovative methodologies that overcome the limitations of animal models and 2D cultures. The aim of this thesis project, born within the clinical study MITICO at the European Institute of Oncology in Milan, is to develop a patient-specific microfluidic device for therapy evaluation in the context of CRC, inside which spheroids—cell aggregates aiming to replicate the Tumor on Chip—can be inserted. The chip requirements included the ability to spatially separate the spheroids, allowing single injection of each, to nourish them through a central channel, and to maintain their three-dimensional shape allowing growth. Furthermore, the design had to facilitate their recovery for possible transcriptomic and metabolomic analyses. As a result, the Computer-Aided Design consists of three chambers allowing diffusion through slits. Each chamber varies in in height and width of the slits, and they are equally spaced and inserted inside a channel that connects them to two reservoirs. The chip fabrication occurred in two steps: master fabrication via two-photon polymerization, followed by replica molding to produce the chips in PDMS. The devices were characterized geometrically and for fluidic connectivity, using both food coloring and measuring mean fluorescent intensity. Biological validation of the chip was then carried out by producing spheroids with CACO-2 cell line using the hanging drops technique. A spheroid injection protocol was optimized, and the effective ability of the medium to reach and adequately nourish the spheroids inside the cages was observed. Spheroids were also labeled with appropriate fluorescent antibodies to assess vitality and 3D shape via fluorescence microscopy. Finally, the spheroid retrieval tests proved effective, allowing omics analyses on the single cells composing the spheroid. The results show that the initial requirements have been met, confirming the validity of this microfluidic device as a possible personalized medicine platform. Indeed, the system allows inserting spheroids and testing their vitality, morphology, and composition.
Il cancro è una delle patologie più mortali al mondo, e in particolare il cancro al colonretto (CRC) risulta tra i più diffusi e letali. Il problema principale nel contesto del CRC è la mancanza di biomarcatori specifici per prevedere la prognosi e di terapie efficaci e universali. Il microambiente tumorale (TME), composto da componenti stromali e immunologiche, gioca un ruolo fondamentale nello sviluppo e nella progressione del CRC. Serve quindi sviluppare modelli personalizzati per testare le terapie direttamente sulle cellule del paziente, poiché los viluppo e la progressione del tumore sono fortemente patient-specific. La ricerca punta a metodologie innovative che superino i limiti dei modelli animali e delle colture 2D. Lo scopo di questo progetto di tesi, che nasce nel contesto dello studio clinico MITICO presso l’Istituto Europeo di Oncologia a Milano, è quello di sviluppare un dispositivo microfluidico patient-specific per la valutazione delle terapie nel contesto del CRC all’ interno del quale inserire gli sferoidi, aggregati cellulari che mirano a replicare il Tumor on Chip. I requisiti del chip prevedevano la possibilità di separare spazialmente gli sferoidi, consentendo l’iniezione singola di ciascuno, di nutrirli attraverso un canale centrale e di mantenere la loro forma tridimensionale e la crescita. Inoltre, il design doveva favorirne il recupero per eventuali analisi di trascrittomica e metabolomica. Si è quindi passati al disegno (utilizzando il software di Computer Aided Design), che consta di tre camere che permettono la diffusione attraverso fessure. Ogni camera varia in altezza e larghezza delle fessure, e sono equamente distanziate e inserite all'interno di un canale che le collega a due reservoir. La realizzazione del chip è avvenuta in due step: fabbricazione del master con la polimerizzazione a due fotoni e in seguito il processo di replica moulding per la realizzazione dei chip in PDMS. I dispositivi sono stati caratterizzati geometricamente e dal punto di vista di connettività fluidica, sia tramite colorante alimentare che valutando l’ intensità media di fluorescenza. Si è poi passati alla validazione biologica del chip realizzando sferoidi con cellule di linea CACO-2 mediante la tecnica delle hanging drops. È stato ottimizzato un protocollo di iniezione degli sferoidi e in seguito è stata osservata l’ effetttiva capacità del mezzo di raggiungere e nutrire adeguatamente gli sferoidi all’ interno delle gabbie. Gli sferoidi sono stati inoltre marcati con opportuni anticorpi fluorescenti in modo da valutarne la vitalità e la forma 3D tramite microscopia a fluorescenza. Infine, i test di recupero degli sferoidi si è rivelato efficace, garantendo la possibilità di effettuare analisi di -omica sulle singole cellule componenti lo sferoide. I risultati evidenziano che i requisiti iniziali sono quindi stati rispettati, confermando la validità di questo dispositivo microfluidico come possibile piattaforma di medicina personalizzata. Il sistema permette infatti di inserire sferoidi e testarne vitalità, morfologia e compisizione.
Development of patient-specific microfluidic device for therapy assessment in colorectal cancer
Puddu, Giorgia
2024/2025
Abstract
Cancer is one of the deadliest diseases worldwide, and in particular colorectal cancer (CRC) is among the most common and lethal. The main issue in the context of CRC is the lack of specific biomarkers to predict prognosis and effective, universal therapies. The tumor microenvironment (TME), composed of stromal and immunological components, plays a fundamental role in the development and progression of CRC. Therefore, it is necessary to develop personalized models to test therapies directly on patient cells, as tumor development and progression are strongly patient-specific. Research focuses on innovative methodologies that overcome the limitations of animal models and 2D cultures. The aim of this thesis project, born within the clinical study MITICO at the European Institute of Oncology in Milan, is to develop a patient-specific microfluidic device for therapy evaluation in the context of CRC, inside which spheroids—cell aggregates aiming to replicate the Tumor on Chip—can be inserted. The chip requirements included the ability to spatially separate the spheroids, allowing single injection of each, to nourish them through a central channel, and to maintain their three-dimensional shape allowing growth. Furthermore, the design had to facilitate their recovery for possible transcriptomic and metabolomic analyses. As a result, the Computer-Aided Design consists of three chambers allowing diffusion through slits. Each chamber varies in in height and width of the slits, and they are equally spaced and inserted inside a channel that connects them to two reservoirs. The chip fabrication occurred in two steps: master fabrication via two-photon polymerization, followed by replica molding to produce the chips in PDMS. The devices were characterized geometrically and for fluidic connectivity, using both food coloring and measuring mean fluorescent intensity. Biological validation of the chip was then carried out by producing spheroids with CACO-2 cell line using the hanging drops technique. A spheroid injection protocol was optimized, and the effective ability of the medium to reach and adequately nourish the spheroids inside the cages was observed. Spheroids were also labeled with appropriate fluorescent antibodies to assess vitality and 3D shape via fluorescence microscopy. Finally, the spheroid retrieval tests proved effective, allowing omics analyses on the single cells composing the spheroid. The results show that the initial requirements have been met, confirming the validity of this microfluidic device as a possible personalized medicine platform. Indeed, the system allows inserting spheroids and testing their vitality, morphology, and composition.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Puddu_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary Puddu Giorgia
Dimensione
28.82 MB
Formato
Adobe PDF
|
28.82 MB | Adobe PDF | Visualizza/Apri |
2025_07_Puddu.pdf
non accessibile
Descrizione: Tesi Puddu Giorgia
Dimensione
77.14 MB
Formato
Adobe PDF
|
77.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240254