It is no exaggeration to state that combating climate change is the main challenge of the 21st century, and the efforts made by the scientific community over the past 60 years are a testament to the centrality of this issue. Over the years, numerous solutions have been proposed to mitigate climate change, particularly through the replacement of fossil fuels as energy sources. Among the many alternatives, hydrogen has gained considerable interest, leading to a large number of studies on its potential benefits in reducing greenhouse gas emissions, such as CO₂ and methane. However, hydrogen also presents several challenges, not only related to its large-scale use, but also concerning its effects on the atmosphere, thus requiring in-depth studies on its possible applications. This thesis follows this path. In order to understand hydrogen’s impact on the atmosphere, a detailed knowledge of atmospheric composition is essential. The study therefore begins with an analysis of atmospheric compounds and their reactions, using a box model described in detail, which examined the results of simulations involving increasing hydrogen concentrations in different environments, such as marine, urban, and stratospheric, evaluating the effects and estimating its GWP (Global Warming Potential). The results were compared with those found in the literature, confirming that in nearly all environments, and especially in those that are significant in terms of mass, an increase in atmospheric hydrogen due to inevitable leaks during storage and transport leads to a non-negligible reduction in key molecules responsible for the removal of greenhouse gases. This confirms hydrogen’s role as a co-greenhouse gas.
Non è una esagerazione sostenere che il contrasto al cambiamento climatico sia la sfida principale del XXI secolo, e gli sforzi che la comunità scientifica ha impiegato in tal senso negli ultimi 60 anni sono una testimonianza della centralità del problema. Nel corso degli anni sono state proposte numerose soluzioni nella mitigazione del cambiamento climatico, specialmente nella sostituzione dei combustibili fossili come carburante. Tra le molte alternative anche l’idrogeno ha suscitato un discreto interesse, e perciò sono stati effettuati numerosi studi sui suoi possibili vantaggi nelle riduzioni delle emissioni di gas serra come la CO2 e il metano. L’idrogeno, tuttavia, porta con sé numerose problematiche non solo legate al suo eventuale impiego su larga scala, ma anche ai suoi effetti in atmosfera, richiedendo perciò studi approfonditi sui suoi possibili impieghi. Questa tesi si muove in tal senso. Per comprendere gli effetti dell’idrogeno sull’atmosfera, è necessario prima di tutto una dettagliata conoscenza della composizione della stessa. Lo studio quindi si concentra in primo luogo sull’analisi dei composti presenti in atmosfera e delle loro reazioni tramite l’utilizzo di un box model descritto nel dettaglio, in seguito commenta i dati ottenuti simulando concentrazioni di idrogeno crescenti in ambienti diversi, quali quello marino, quello urbano e quello stratosferico, verificandone gli effetti e valutando il suo GWP (Global Warming Potential). I risultati ottenuti sono stati confrontati con quelli proposti in letteratura, confermando che nella quasi totalità degli ambienti, e in tutti quelli rilevanti in termini di massa, l’incremento di idrogeno in atmosfera dovuto a perdite inevitabili in fase stoccaggio e nel trasporto di H2 comporta una diminuzione non trascurabile di molecole in atmosfera fondamentali per l’eliminazione di gas serra, confermando il ruolo di idrogeno come co-gas serra.
Atmospheric box model simulation and assessment of the impact of increasing hydrogen concentrations
ABBATE, SILVIO
2024/2025
Abstract
It is no exaggeration to state that combating climate change is the main challenge of the 21st century, and the efforts made by the scientific community over the past 60 years are a testament to the centrality of this issue. Over the years, numerous solutions have been proposed to mitigate climate change, particularly through the replacement of fossil fuels as energy sources. Among the many alternatives, hydrogen has gained considerable interest, leading to a large number of studies on its potential benefits in reducing greenhouse gas emissions, such as CO₂ and methane. However, hydrogen also presents several challenges, not only related to its large-scale use, but also concerning its effects on the atmosphere, thus requiring in-depth studies on its possible applications. This thesis follows this path. In order to understand hydrogen’s impact on the atmosphere, a detailed knowledge of atmospheric composition is essential. The study therefore begins with an analysis of atmospheric compounds and their reactions, using a box model described in detail, which examined the results of simulations involving increasing hydrogen concentrations in different environments, such as marine, urban, and stratospheric, evaluating the effects and estimating its GWP (Global Warming Potential). The results were compared with those found in the literature, confirming that in nearly all environments, and especially in those that are significant in terms of mass, an increase in atmospheric hydrogen due to inevitable leaks during storage and transport leads to a non-negligible reduction in key molecules responsible for the removal of greenhouse gases. This confirms hydrogen’s role as a co-greenhouse gas.| File | Dimensione | Formato | |
|---|---|---|---|
|
tesi_Silvio_Abbate.pdf
accessibile in internet per tutti
Descrizione: tesi Silvio Abbate
Dimensione
8.87 MB
Formato
Adobe PDF
|
8.87 MB | Adobe PDF | Visualizza/Apri |
|
ES_Silvio_Abbate.pdf
accessibile in internet per tutti
Descrizione: Executive Summary Silvio Abbate
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240262