Emergency vehicles from rescue services use the road network daily to reach incident locations. Road congestion, especially in urban areas, can slow down the response times of these services, negatively impacting the effectiveness of health and safety interventions. In this context, signalized intersections can be another obstacle, particularly if they are managed by fixed-cycle systems, as they cannot guarantee priority passage for emergency vehicles. Some more advanced systems allow dedicating a green phase to rescue vehicles by suddenly interrupting the traffic light cycle. However, this system often causes confusion and delays for other users, with possible negative impacts on the level of service and safety. This thesis aims to develop a traffic signal preemption algorithm that can guarantee priority passage for emergency vehicles at signalized intersections, while limiting, as much as practicable, the negative impacts on the level of service for other traffic flows. The proposed strategy features an adaptive approach that, unlike traditional "phase skipping" systems, maintains the integrity of the traffic light phase sequence. It does this by dynamically modifying the duration of the green lights based on the position and estimated time of arrival of the emergency vehicle. To analyze the benefits of this approach, several variations of the algorithm are proposed, which also include different levels of technological requirements, in order to quantify the performance advantage of each solution. The effectiveness of each configuration is evaluated through micro-simulations using PTV Vissim software. This involves modeling a realistic intersection and testing the algorithms in a wide matrix of scenarios that combine different traffic volumes, emergency vehicle maneuvers, and different detection times and distances. This work aims to provide a comparative evaluation of the proposed solutions, but it also offers a critical analysis of the possible trade-offs between the benefits for emergency vehicles and the impacts of preemption on regular traffic.
I veicoli di emergenza dei servizi di soccorso utilizzano quotidianamente la rete stradale per raggiungere i luoghi degli interventi. La congestione stradale, in particolare in ambito urbano, può rallentare i tempi di risposta di tali servizi, impattando negativamente sull'efficacia degli interventi sanitari e di sicurezza. In tale contesto, le intersezioni semaforizzate, possono costituire un ulteriore elemento ostativo, soprattutto se gestite da impianti con funzionamento a ciclo fisso, in quanto non riescono a garantire un passaggio prioritario ai veicoli d’emergenza. Alcuni sistemi più evoluti permettono di dedicare una fase di verde ai veicoli di soccorso tramite l'interruzione improvvisa del ciclo semaforico, tale sistema genera spesso confusione e ritardi per gli altri utenti, con possibili impatti negativi in termini di livello di servizio e sicurezza. Questa tesi si propone di sviluppare un algoritmo di preferenziamento semaforico in grado di garantire un passaggio prioritario ai mezzi di emergenza nelle intersezioni semaforizzate, limitando, per quanto praticabile, gli impatti negativi sul livello di servizio per le correnti veicolari. La strategia proposta si distingue per un approccio adattivo che, a differenza dei classici sistemi a "salto di fase", mantiene l'integrità della sequenza delle fasi semaforiche, modificando dinamicamente la durata dei verdi in funzione della posizione e del tempo di arrivo stimato del mezzo di soccorso. Per analizzare i benefici di tale approccio, si propongono diverse varianti dell'algoritmo, che prevedono anche differenti livelli di requisiti tecnologici, al fine di quantificare il vantaggio prestazionale di ogni soluzione. L'efficacia di ciascuna configurazione viene valutata attraverso micro-simulazioni realizzate con il software PTV Vissim, modellando un'intersezione realistica e testando gli algoritmi in un'ampia matrice di scenari che combinano diversi volumi di traffico, manovre del veicolo d'emergenza, differenti istanti e distanze di rilevamento. Questo lavoro si propone di fornire una valutazione comparativa delle soluzioni proposte, ma offre anche un'analisi critica relativamente ai possibili compromessi tra benefici per i mezzi di soccorso e impatti del preferenziamento sulla viabilità ordinaria.
Sviluppo e valutazione modellistica di algoritmi di preferenziamento semaforico adattivo per veicoli d'emergenza
Broggi, Andrea
2024/2025
Abstract
Emergency vehicles from rescue services use the road network daily to reach incident locations. Road congestion, especially in urban areas, can slow down the response times of these services, negatively impacting the effectiveness of health and safety interventions. In this context, signalized intersections can be another obstacle, particularly if they are managed by fixed-cycle systems, as they cannot guarantee priority passage for emergency vehicles. Some more advanced systems allow dedicating a green phase to rescue vehicles by suddenly interrupting the traffic light cycle. However, this system often causes confusion and delays for other users, with possible negative impacts on the level of service and safety. This thesis aims to develop a traffic signal preemption algorithm that can guarantee priority passage for emergency vehicles at signalized intersections, while limiting, as much as practicable, the negative impacts on the level of service for other traffic flows. The proposed strategy features an adaptive approach that, unlike traditional "phase skipping" systems, maintains the integrity of the traffic light phase sequence. It does this by dynamically modifying the duration of the green lights based on the position and estimated time of arrival of the emergency vehicle. To analyze the benefits of this approach, several variations of the algorithm are proposed, which also include different levels of technological requirements, in order to quantify the performance advantage of each solution. The effectiveness of each configuration is evaluated through micro-simulations using PTV Vissim software. This involves modeling a realistic intersection and testing the algorithms in a wide matrix of scenarios that combine different traffic volumes, emergency vehicle maneuvers, and different detection times and distances. This work aims to provide a comparative evaluation of the proposed solutions, but it also offers a critical analysis of the possible trade-offs between the benefits for emergency vehicles and the impacts of preemption on regular traffic.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Broggi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
14.16 MB
Formato
Adobe PDF
|
14.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240278