The increasing autonomy of modern vehicles relies heavily on the ability to perceive, interpret, and map the surrounding environment with high accuracy. While Global Navigation Satellite Systems (GNSS) are often employed as a primary source of localization and mapping data, they are not always reliable in all operational conditions, particularly in scenarios where coverage is degraded or unavailable. This motivates the development of complementary perception-based solutions. This thesis presents a LiDAR-based offline segmentation pipeline specifically designed for racetrack environments, where geometric precision and structural continuity of the mapped boundaries are essential. The proposed approach processes raw LiDAR scans collected during vehicle laps to extract the inner and outer edges of the track. The pipeline comprises a sequence of modules including scan pre-processing, region growing clustering for surface segmentation, statistical modeling for line detection, and geometric ordering of boundary points. A curvilinear coordinate system is constructed over the extracted lines, enabling accurate point parametrization and spline-based trajectory fitting. These representations are then evaluated against high-precision GNSS reference data, which serve as the benchmark for assessing geometric accuracy. Both qualitative and quantitative analyses are conducted to validate the effectiveness of the method. The results confirm that the LiDAR-derived track maps closely align with the reference geometry, demonstrating the pipeline’s potential for applications in motorsport, autonomous racing, and high-accuracy localization systems.
L’autonomia crescente dei veicoli moderni si basa fortemente sulla capacità di percepire, interpretare e mappare con elevata accuratezza l’ambiente circostante. Sebbene i sistemi di navigazione satellitare globale (GNSS) siano comunemente impiegati come principale fonte di dati per localizzazione e mappatura, essi non risultano sempre affidabili in tutte le condizioni operative, in particolare in scenari in cui la copertura è ridotta o assente. Questo ha motivato lo sviluppo di soluzioni complementari basate sulla percezione del veicolo. La presente tesi propone una pipeline di segmentazione offline basata su sensore LiDAR, appositamente progettata per ambienti da pista, dove la precisione geometrica e la continuità strutturale dei bordi rilevati risultano fondamentali. L’approccio sviluppato elabora le scansioni LiDAR grezze raccolte durante i giri del veicolo, al fine di estrarre i bordi interni ed esterni del tracciato. La pipeline è composta da una sequenza di moduli che includono il pre-processing delle scansioni, segmentazione delle superfici tramite region growing clustering, modellazione statistica per il rilevamento delle linee, e ordinamento geometrico dei punti di bordo. Sulle linee estratte viene costruito un sistema di coordinate curvilinee, che consente un’accurata parametrizzazione dei punti e l’adattamento di traiettorie mediante spline. Le rappresentazioni ottenute vengono infine confrontate con dati GNSS ad alta precisione, utilizzati come riferimento per valutare l’accuratezza geometrica. Per validare l’efficacia del metodo sono state condotte analisi sia qualitative che quantitative. I risultati confermano che le mappe LiDAR ottenute seguono fedelmente la geometria di riferimento, dimostrando il potenziale della pipeline per applicazioni nel motorsport, nella guida autonoma su pista e nei sistemi di localizzazione ad alta precisione.
Lidar-based segmentation of motorsport tracks
PUSTORINO, ANDREA LUIGI
2024/2025
Abstract
The increasing autonomy of modern vehicles relies heavily on the ability to perceive, interpret, and map the surrounding environment with high accuracy. While Global Navigation Satellite Systems (GNSS) are often employed as a primary source of localization and mapping data, they are not always reliable in all operational conditions, particularly in scenarios where coverage is degraded or unavailable. This motivates the development of complementary perception-based solutions. This thesis presents a LiDAR-based offline segmentation pipeline specifically designed for racetrack environments, where geometric precision and structural continuity of the mapped boundaries are essential. The proposed approach processes raw LiDAR scans collected during vehicle laps to extract the inner and outer edges of the track. The pipeline comprises a sequence of modules including scan pre-processing, region growing clustering for surface segmentation, statistical modeling for line detection, and geometric ordering of boundary points. A curvilinear coordinate system is constructed over the extracted lines, enabling accurate point parametrization and spline-based trajectory fitting. These representations are then evaluated against high-precision GNSS reference data, which serve as the benchmark for assessing geometric accuracy. Both qualitative and quantitative analyses are conducted to validate the effectiveness of the method. The results confirm that the LiDAR-derived track maps closely align with the reference geometry, demonstrating the pipeline’s potential for applications in motorsport, autonomous racing, and high-accuracy localization systems.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Pustorino.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
19.3 MB
Formato
Adobe PDF
|
19.3 MB | Adobe PDF | Visualizza/Apri |
2025_07_Pustorino_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240289