Leaky wave radiation, while often regarded as a limitation in acoustic waveguides, can be exploited as a powerful mechanism for energy transfer in a broad spectrum of applications, including the biomedical field for procedures such as transcranial Focused Ultrasound (tFUS). The aim of this thesis is to study and control leaky wave radiation through the application of Acoustic Metamaterials. The investigated system consists of a fluid-loaded elastic waveguide, representing a simplified model of the human skull, equipped with an array of locally resonant elements whose stiffness is modulated in time or space. A comprehensive dynamic analysis is carried out: starting with preliminary configurations (bare beam and beam with resonators), the research advances to the study of the fluid-loaded metasurface, with both analytic and numerical approaches used to derive and validate the Dispersion Relation and to characterize the leaky Lamb waves formation mechanism. A relevant outcome is that, in the absence of modulation, the generation of efficient leaky wave radiation is strongly limited by the intrinsic Dispersion properties of the system. By introducing temporal or spatial modulation to the resonating units, it becomes possible to shift Dispersion branches into the sound cone of the fluid, thus enabling a leaky waves emission tailorable through the modulation parameters. Numerical validations, performed using both Finite Element Methods and Finite-Difference Time-Domain algorithms, support the theoretical predictions, showcasing the effectiveness of modulation strategies in achieving controlled leaky wave radiation. The findings of this work provide novel physical mechanisms for the focusing and manipulation of ultrasound in a wide variety of applications.
La radiazione di onde leaky, spesso considerata un limite nell'ambito di guide d'onda acustiche, può in realtà rappresentare un efficace meccanismo di trasferimento di energia, con una serie di applicazioni che comprendono anche il settore biomedicale, ad esempio nelle procedure di transcranial Focused Ultrasound (tFUS). La tesi si propone di studiare e controllare la radiazione di onde leaky attraverso l’utilizzo di Metamateriali Acustici. Il sistema oggetto di indagine è costituito da una guida d’onda elastica a contatto con un fluido, un modello semplificato del cranio umano, su cui sono applicati degli elementi risonanti la cui rigidezza viene modulata nel tempo o nello spazio. L'analisi dinamica è stata condotta a partire da configurazioni preliminari (quali la trave semplice e la trave con i risonatori), per poi concentrarsi sullo studio della metasuperficie a contatto con il fluido, utilizzando sia approcci analitici che numerici per derivare e validare la Relazione di Dispersione e per caratterizzare il meccanismo di formazione delle onde leaky di Lamb. Un risultato di particolare rilievo è che, in assenza di modulazione, la generazione di onde leaky è fortemente limitata dalle proprietà di Dispersione intrinseche del sistema. Introducendo una modulazione temporale o spaziale degli elementi risonanti, è possibile traslare i rami della Dispersione all’interno del cono del suono del fluido, dando così origine a un’emissione di onde leaky controllabile tramite i parametri di modulazione. Le simulazioni numeriche, svolte tramite l'utilizzo sia del Metodo degli Elementi Finiti che di algoritmi di tipo Finite-Difference Time-Domain, confermano le previsioni teoriche e dimostrano l’efficacia delle strategie di modulazione proposte. I risultati emersi in questo lavoro aprono nuove prospettive per la focalizzazione e il controllo degli ultrasuoni in numerosi ambiti applicativi.
Taming leaky wave radiation with metamaterials
SIVAEVA, DARIA
2024/2025
Abstract
Leaky wave radiation, while often regarded as a limitation in acoustic waveguides, can be exploited as a powerful mechanism for energy transfer in a broad spectrum of applications, including the biomedical field for procedures such as transcranial Focused Ultrasound (tFUS). The aim of this thesis is to study and control leaky wave radiation through the application of Acoustic Metamaterials. The investigated system consists of a fluid-loaded elastic waveguide, representing a simplified model of the human skull, equipped with an array of locally resonant elements whose stiffness is modulated in time or space. A comprehensive dynamic analysis is carried out: starting with preliminary configurations (bare beam and beam with resonators), the research advances to the study of the fluid-loaded metasurface, with both analytic and numerical approaches used to derive and validate the Dispersion Relation and to characterize the leaky Lamb waves formation mechanism. A relevant outcome is that, in the absence of modulation, the generation of efficient leaky wave radiation is strongly limited by the intrinsic Dispersion properties of the system. By introducing temporal or spatial modulation to the resonating units, it becomes possible to shift Dispersion branches into the sound cone of the fluid, thus enabling a leaky waves emission tailorable through the modulation parameters. Numerical validations, performed using both Finite Element Methods and Finite-Difference Time-Domain algorithms, support the theoretical predictions, showcasing the effectiveness of modulation strategies in achieving controlled leaky wave radiation. The findings of this work provide novel physical mechanisms for the focusing and manipulation of ultrasound in a wide variety of applications.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Sivaeva_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
11.81 MB
Formato
Adobe PDF
|
11.81 MB | Adobe PDF | Visualizza/Apri |
2025_07_Sivaeva_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2.86 MB
Formato
Adobe PDF
|
2.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240294