Neutron monitors (NMs) are currently among the most used instruments to monitor cosmic radiation in the rigidity range from 1 to 15 GV. Thanks to their high counting rate and detection efficiency, they are capable of measuring variations of the cosmic ray flux, such as Ground Level Enhancement (GLE) and Forbush Decrease (FD). At present, the global network, consisting of more than 50 stations, is primarily composed of NM64 monitors. However, in recent years more compact and cost-efficient designs have been deployed as alternatives, particularly mini neutron monitors (mNMs) and the NM2023. The aim of this thesis is to provide a comparative analysis between these new designs and the standard NM64, highlighting differences in terms of size, weight, response function, and dependence on environmental parameters. The limitations and advantages of each model are discussed, to then identify the optimal conditions in which these new designs could be implemented to fill gaps in the global network. Through the analysis of different modulations of cosmic radiation, with a particular focus on Forbush Decreases, the capabilities of these new designs to detect such events are evaluated. Furthermore, a preliminary comparison with muon detectors is introduced, with the aim of extending coverage in both rigidity and directionality. From the analysis, it emerges that, if properly integrated, these new designs show promising results. Although field validation is still limited due to their recent developments, these models represent a potentially simpler and more cost-effective alternative to the NM64 in future development scenarios.
I monitor di neutroni (NMs) sono ad oggi tra i dispositivi più utilizzati per il monitoraggio delle radiazioni cosmiche con rigidità da 1 a 15 GV. Grazie all’elevato rateo di conteggio ed efficienza di rilevazione, sono in grado di misurare variazioni del flusso di radiazione cosmica, come gli eventi di Ground Level Enhancement (GLE) e di Forbush Decrease (FD). Attualmente il network globale, composto da più di 50 stazioni, è costituito principalmente da NM64; tuttavia, negli ultimi design più compatti ed economici sono stati adottati come alternativa, in particolare i mini monitor di neutroni (mNMs) e il NM2023. Lo scopo di questa tesi è di fornire un’analisi comparativa tra questi nuovi design e il modello NM64 standard, evidenziando differenze in termini di dimensione, peso, funzione di risposta e le varie dipendenze da parametri ambientali. Vengono poi discusse le limitazioni e vantaggi dei vari design, per poi identificare le situazioni ottimali in cui possono essere introdotti per colmare lacune nel network globale. Attraverso l’analisi di differenti modulazioni della radiazione cosmica, in particolar modo dei Forbush Decrease, si valuta la capacità di questi nuovi design a rilevare tali fenomeni. Inoltre, viene introdotto un primo confronto con i detector di muoni, al fine di estendere la copertura in rigidità e direzionalità. Dalle analisi emerge che, se integrati correttamente, questi nuovi design mostrano risultati promettenti. Nonostante manchi ancora una sufficiente validazione su campo, a causa della recente introduzione, questi modelli possono essere un’opzione più semplice ed economica del NM64 per scenari futuri.
Mini neutron monitors and NM2023: a comparison with NM64 based on cosmic ray data
JIANG, ROBERTO
2024/2025
Abstract
Neutron monitors (NMs) are currently among the most used instruments to monitor cosmic radiation in the rigidity range from 1 to 15 GV. Thanks to their high counting rate and detection efficiency, they are capable of measuring variations of the cosmic ray flux, such as Ground Level Enhancement (GLE) and Forbush Decrease (FD). At present, the global network, consisting of more than 50 stations, is primarily composed of NM64 monitors. However, in recent years more compact and cost-efficient designs have been deployed as alternatives, particularly mini neutron monitors (mNMs) and the NM2023. The aim of this thesis is to provide a comparative analysis between these new designs and the standard NM64, highlighting differences in terms of size, weight, response function, and dependence on environmental parameters. The limitations and advantages of each model are discussed, to then identify the optimal conditions in which these new designs could be implemented to fill gaps in the global network. Through the analysis of different modulations of cosmic radiation, with a particular focus on Forbush Decreases, the capabilities of these new designs to detect such events are evaluated. Furthermore, a preliminary comparison with muon detectors is introduced, with the aim of extending coverage in both rigidity and directionality. From the analysis, it emerges that, if properly integrated, these new designs show promising results. Although field validation is still limited due to their recent developments, these models represent a potentially simpler and more cost-effective alternative to the NM64 in future development scenarios.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Jiang.pdf
solo utenti autorizzati a partire dal 29/06/2026
Descrizione: testo della tesi
Dimensione
5.95 MB
Formato
Adobe PDF
|
5.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240357