The circulatory system plays a fundamental role in the human organism, contributing not only to the transport of nutrients but also to essential homeostatic, signalling, and immune functions. Although hierarchical organization is a key feature of the vasculature, most current in vitro models tend to replicate either capillaries or larger-diameter vessels in isolation. Reproducing this complexity is essential for investigating vascular pathophysiology and enhancing the relevance of models of tissues that intrinsically interact with the vascular system. The aim of the thesis is to develop a microfluidic platform for engineering a hierarchical vascular model, consisting of a central capillary network anastomosed with two lateral large-diameter vessels. The two vascular structures were first optimized separately, and based on the selected parameters, a new microfluidic platform was developed to enable their integration. For the formation of large-calibre vessels, the Viscous Finger Patterning (VFP) technique was employed, leveraging viscosity differences between a hydrogel and a liquid to generate tubular structures in a simple and scalable manner. The hydrogel type and composition and the geometric dimensions of the microfluidic channel were optimized. In parallel, the formation of the capillary network was investigated by analysing the effect of channel geometry, support cells and growth factors on the self-assembly of endothelial cells, and a quantitative morphological analysis of the resulting vascular structures was conducted. By integrating the selected geometrical parameters, a final three-channel microfluidic platform was developed to accommodate both vascular structures. The platform was geometrically characterized, and an initial biological study was conducted to assess its functionality. VFP-formed tubular structures were effectively endothelialized, resulting in a monolayer expressing proteins typical of vascular intercellular junctions. Future developments include the generation of a model that replicates the characteristic arteriole-capillary-venule architecture, and its application in pathological and pharmacological models.
Il sistema circolatorio ricopre un ruolo fondamentale nell’organismo umano, contribuendo non solo al trasporto di nutrienti, ma anche a funzioni omeostatiche, di comunicazione e di difesa immunitaria. Nonostante una caratteristica chiave della vascolatura sia la sua architettura gerarchica, la maggior parte dei modelli in vitro correnti tende a replicare separatamente solo capillari o vasi di maggiore diametro. La presente tesi si propone di sviluppare una piattaforma microfluidica per l’ingegnerizzazione di un modello vascolare gerarchico, costituito da un network centrale di capillari anastomizzati con due vasi laterali di maggiore diametro. Le due strutture vascolari sono state ingegnerizzate separatamente e, sulla base dei parametri ottimizzati, è stata realizzata una nuova piattaforma microfluidica concepita per consentirne l’integrazione. Per la formazione dei vasi di calibro maggiore, è stata impiegata la tecnica del Viscous Finger Patterning (VFP), che sfrutta differenze di viscosità tra un idrogelo ed un liquido per formare strutture tubulari in modo semplice e scalabile. Sono stati ottimizzati sia la composizione dell’idrogelo, sia le dimensioni geometriche del canale microfluidico. Per la formazione del network capillare, è stata investigata l’influenza esercitata da geometria del canale, cellule di supporto e fattori di crescita sull’auto-organizzazione di cellule endoteliali, analizzando i parametri morfologici delle strutture vascolari ottenute. È stata infine realizzata una piattaforma microfluidica a tre canali in grado di ospitare entrambe le strutture vascolari. La piattaforma è stata caratterizzata geometricamente e un primo esperimento biologico è stato condotto per valutarne la funzionalità. Mediante VFP, è stato possibile ottenere strutture tubulari successivamente endotelializzate, formando un monostrato endoteliale caratterizzato dalla presenza di proteine di giunzione tipiche delle cellule vascolari. Futuri sviluppi del presente lavoro includono l’utilizzo della piattaforma per generare un modello di microvascolatura e per l’implementazione di modelli patologici e farmacologici.
Development of a microfluidic platform for the establishment of hierarchical vasculature
Peddio, Sonia
2024/2025
Abstract
The circulatory system plays a fundamental role in the human organism, contributing not only to the transport of nutrients but also to essential homeostatic, signalling, and immune functions. Although hierarchical organization is a key feature of the vasculature, most current in vitro models tend to replicate either capillaries or larger-diameter vessels in isolation. Reproducing this complexity is essential for investigating vascular pathophysiology and enhancing the relevance of models of tissues that intrinsically interact with the vascular system. The aim of the thesis is to develop a microfluidic platform for engineering a hierarchical vascular model, consisting of a central capillary network anastomosed with two lateral large-diameter vessels. The two vascular structures were first optimized separately, and based on the selected parameters, a new microfluidic platform was developed to enable their integration. For the formation of large-calibre vessels, the Viscous Finger Patterning (VFP) technique was employed, leveraging viscosity differences between a hydrogel and a liquid to generate tubular structures in a simple and scalable manner. The hydrogel type and composition and the geometric dimensions of the microfluidic channel were optimized. In parallel, the formation of the capillary network was investigated by analysing the effect of channel geometry, support cells and growth factors on the self-assembly of endothelial cells, and a quantitative morphological analysis of the resulting vascular structures was conducted. By integrating the selected geometrical parameters, a final three-channel microfluidic platform was developed to accommodate both vascular structures. The platform was geometrically characterized, and an initial biological study was conducted to assess its functionality. VFP-formed tubular structures were effectively endothelialized, resulting in a monolayer expressing proteins typical of vascular intercellular junctions. Future developments include the generation of a model that replicates the characteristic arteriole-capillary-venule architecture, and its application in pathological and pharmacological models.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Peddio_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
7.63 MB
Formato
Adobe PDF
|
7.63 MB | Adobe PDF | Visualizza/Apri |
2025_07_Peddio.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
64.83 MB
Formato
Adobe PDF
|
64.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240379