The reliability of missile launch operations from surface vessels critically depends on the ability to simulate the ship's dynamic behavior under realistic sea conditions. This thesis addresses this challenge by developing a frequency-domain numerical code in MATLAB capable of simulating the rigid-body motions of a floating platform subjected to irregular wave excitation. The code was assembled into a module, which was designed for seamless integration within existing missile system simulators and requires only limited input data concerning the vessel’s geometry and sea state, making it suitable for early-phase design and operational validation scenarios where detailed information is often unavailable. The computational framework combines analytical and semi-empirical methods to model wave excitation based on standard ocean spectra (Bretschneider and JONSWAP), and implements a 5-degrees-of-freedom motion model (heave, pitch, roll, sway and yaw) rooted in linear potential flow theory. Hydrodynamic coefficients are evaluated using sectional 2D methods (via Lewis conformal mapping) and assembled into 3D hydrodynamic properties through Salvesen-Tuck-Faltinsen (STF) strip theory. Particular attention is devoted to the modeling of roll motion since viscous effects are particularly important, which are taken into account through empirical damping formulations. Time histories of ship motion are then reconstructed from the spectrums of motion, ensuring statistical consistency with the prescribed sea state. Validation of the module was carried out through comparison with experimental benchmarks and reference data from military standards. The resulting tool offers a physically meaningful, computationally efficient, and highly modular solution for generating realistic platform motion histories in support of missile launch simulations.
L’affidabilità delle operazioni di lancio missilistico da nave dipende in modo cruciale dalla capacità di simulare il comportamento dinamico della piattaforma in condizioni ambientali realistiche. La presente tesi affronta tale problematica sviluppando un codice basato sul dominio di frequenza, realizzato in MATLAB, per la simulazione del moto rigido di una piattaforma galleggiante soggetta all’eccitazione di onde irregolari. Il codice è stato organizzato in forma modulare, con l’obiettivo di consentirne l’integrazione diretta all’interno di simulatori di sistemi missilistici già esistenti. Il numero di input richiesto è stato ridotto al minimo, limitandosi ai principali parametri relativi alla geometria dello scafo e allo stato del mare, risultando così adatto a scenari di progettazione preliminare o validazione operativa nei quali dati dettagliati non siano ancora disponibili. E' stato adottato un approccio misto analitico e semi-empirico per la modellazione dell’eccitazione ondosa basata su spettri oceanici standard (Bretschneider e JONSWAP) e implementa un modello di moto a cinque gradi di libertà (beccheggio, rollio, alzo, deriva e imbardata) fondato sulla teoria del potenziale lineare. I coefficienti idrodinamici sono valutati mediante metodi sezionali bidimensionali (tramite mappatura conforme di Lewis) e ricomposti in proprietà tridimensionali secondo la teoria delle strisce di Salvesen-Tuck-Faltinsen (STF). Particolare attenzione è stata dedicata alla modellazione del rollio data l'importanza degli effetti viscosi, i quali vengono presi in considerazione attraverso formulazioni empiriche di smorzamento. Le serie temporali del moto della nave vengono infine ricostruite dagli spettri del moto, garantendo la coerenza statistica rispetto allo stato del mare prescritto. La validazione del modulo è stata condotta attraverso il confronto con dati sperimentali di riferimento e standard militari. Il risultato è uno strumento concettualmente solido, computazionalmente efficiente e altamente modulare, in grado di generare storie temporali realistiche dei moti navali a supporto della simulazione del lancio di missili.
Dynamics of missile launch from a floating base: modeling and practical applications
Lontani, Nicolò
2024/2025
Abstract
The reliability of missile launch operations from surface vessels critically depends on the ability to simulate the ship's dynamic behavior under realistic sea conditions. This thesis addresses this challenge by developing a frequency-domain numerical code in MATLAB capable of simulating the rigid-body motions of a floating platform subjected to irregular wave excitation. The code was assembled into a module, which was designed for seamless integration within existing missile system simulators and requires only limited input data concerning the vessel’s geometry and sea state, making it suitable for early-phase design and operational validation scenarios where detailed information is often unavailable. The computational framework combines analytical and semi-empirical methods to model wave excitation based on standard ocean spectra (Bretschneider and JONSWAP), and implements a 5-degrees-of-freedom motion model (heave, pitch, roll, sway and yaw) rooted in linear potential flow theory. Hydrodynamic coefficients are evaluated using sectional 2D methods (via Lewis conformal mapping) and assembled into 3D hydrodynamic properties through Salvesen-Tuck-Faltinsen (STF) strip theory. Particular attention is devoted to the modeling of roll motion since viscous effects are particularly important, which are taken into account through empirical damping formulations. Time histories of ship motion are then reconstructed from the spectrums of motion, ensuring statistical consistency with the prescribed sea state. Validation of the module was carried out through comparison with experimental benchmarks and reference data from military standards. The resulting tool offers a physically meaningful, computationally efficient, and highly modular solution for generating realistic platform motion histories in support of missile launch simulations.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Nicolo_Lontani.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240392