3D Printing of Concrete is the printing of concrete using digital fabrication techniques. It refers to various digital fabrication techniques for cementitious materials based on one of the many different 3D printing techniques. In the current age, the construction industry is going on a rapid industrialization ranging from production methods to the building methods as can be seen by the shifting of the traditional method of mixing and casting concrete on site onto various pre-cast or pre-fabrication construction techniques in many of the developing and industrialized countries. 3D Printed Concrete (3DPC) is one of these new methods that have arisen from this rapid industrialization. There are several differences between the 3DPC and the traditionally cast concrete which has led to a great need of research into these differences. To understand the limitations and potential of 3D Printed Concrete (3DPC), a comparative study was conducted between both 3DPC and traditionally cast concrete Push-off tests were conducted with three different kinds of specimens known as triplets. The first two being where monolithically cast traditional concrete and traditionally cast concrete blocks joined using epoxy with two different kinds of epoxy being used for this purpose were used and the last kind of specimen were the 3DPC specimens printed as a single unit. Two different test setups were used for conducting the push-off test with the difference being the presence of horizontal constraints. The push-off test was conducted with the purpose of investigating the applicability of printing 3DPC as separate blocks and then joining them through epoxy with particular focus on understanding the interlayer bond strength and behaviour. Similarly, the pull-out test was also conducted with the same purpose as the push-off test with three different kinds of specimens being tested. One was the traditionally cast concrete with the steel rebars of 5mm used were inserted into its centre and the other two were 3DPC specimens where the steel rebars were inserted in the direction parallel to the printed layers and the other where the steel rebars were inserted in the direction perpendicular to the layers. The pull-out test was conducted with the purpose of evaluating the bond strength between the concrete and the rebar and to see the influence of interlayer orientation on anchorage performance in 3DPC specimens. A simple test involving force being applied at the centre of 3DPC specimens that printed in a S-Shape was conducted. These 3DPC S-Shape specimens were the same as the triplets printed for the push-off test with only being manufactured differently. The test was conducted with the purpose of confirming whether crack initiation and propagation consistently occurred along the triplet interfaces, highlighting them as structural weak points with this triplet interface also acting as an interlayer interface too. The results from the push-off test demonstrated that while monolithically printed 3DPC specimens generally exhibit higher strength due to their continuous structure, epoxy-bonded assemblies present a practical and convenient alternative. Despite a slight reduction in strength, epoxy joints showed consistent performance, with most failures occurring in the concrete substrate rather than at the bond interface, indicating a reliable level of adhesion. From the pull-out test, it was concluded as expected and seen from the literature that for the traditional concrete that as the embedment length increases the pull-out force required for failure increases that means as the bond between the concrete and the steel rebar is now longer so more strength is required for pull-out. The bond strength was calculated and observed to be constant over the different embedment lengths that aligned with the assumption of assuming uniform bond strength over short embedment lengths in pull-out tests. From the simple force test on the 3DPC S-Shape specimens, it was further cemented and concluded from the results that the major point of weakness in a 3DPC specimen was the vertical interlayer interface that is the interface between the triplets. The key difference between the triplets for the push-off test and the S-Shape specimens for the simple force test being the first specimen the shear properties of the horizontal interlayer interface is seen and for the latter the shear properties of the vertical interlayer interface is seen. These results displayed the effectiveness of these tests in the evaluation of interlayer bond strength and the bond strength between the rebar and the concrete in the case of 3DPC as due to the rather new nature of 3DPC, there have been no standard guidelines for testing being defined for 3DPC. For further research, more experiments and research can be done on further improving the interlayer bonds in 3DPC and the bond strength between the rebar and 3DPC in much more detailed ways. Such as using epoxy agents to improve the interlayer bond strength to improve the strength of the 3DPC and the bond strength between the rebar and the 3DPC to improve the push-off and pull-out test results, respectively.
La stampa 3D del calcestruzzo è la stampa di calcestruzzo utilizzando tecniche di fabbricazione digitale. Si riferisce a varie tecniche di fabbricazione digitale per materiali cementizi basate su una delle numerose tecniche di stampa 3D. Nell'era attuale, il settore delle costruzioni sta attraversando una rapida industrializzazione che spazia dai metodi di produzione ai metodi di costruzione, come si può vedere dal passaggio dal metodo tradizionale di miscelazione e getto del calcestruzzo in cantiere a varie tecniche di costruzione prefabbricate o prefabbricate in molti paesi in via di sviluppo e industrializzati. Il calcestruzzo stampato in 3D (3DPC) è uno di questi nuovi metodi emersi da questa rapida industrializzazione. Esistono diverse differenze tra il 3DPC e il calcestruzzo gettato tradizionalmente, il che ha portato a una grande necessità di ricerca su queste differenze. Per comprendere i limiti e il potenziale del calcestruzzo stampato in 3D (3DPC), è stato condotto uno studio comparativo tra il 3DPC e il calcestruzzo gettato tradizionalmente. Sono stati condotti test di spinta con tre diversi tipi di provini, noti come triplette. I primi due sono stati realizzati con calcestruzzo tradizionale colato monoliticamente e blocchi di calcestruzzo colato tradizionalmente, uniti tramite resina epossidica con due diversi tipi di resina epossidica utilizzati a questo scopo, mentre l'ultimo tipo di campione è stato costituito da campioni 3DPC stampati come un'unica unità. Per condurre il test di spinta sono state utilizzate due diverse configurazioni di prova, con la differenza della presenza di vincoli orizzontali. Il test di spinta è stato condotto allo scopo di studiare l'applicabilità della stampa di blocchi 3DPC separati e della loro successiva unione tramite resina epossidica, con particolare attenzione alla comprensione della resistenza e del comportamento dell'adesione interstrato. Analogamente, anche il test di estrazione è stato condotto con lo stesso scopo del test di spinta, testando tre diversi tipi di campione. Uno era il calcestruzzo colato tradizionalmente con barre d'acciaio da 5 mm inserite al centro, mentre gli altri due erano campioni 3DPC in cui le barre d'acciaio erano inserite parallelamente agli strati stampati e l'altro in cui le barre d'acciaio erano inserite perpendicolarmente agli strati. Il test di pull-out è stato condotto allo scopo di valutare la resistenza dell'adesione tra calcestruzzo e barre d'armatura e di verificare l'influenza dell'orientamento degli interstrati sulle prestazioni di ancoraggio nei campioni 3DPC. È stato condotto un semplice test che prevedeva l'applicazione di una forza al centro di campioni 3DPC stampati a forma di S. Questi campioni 3DPC a forma di S erano identici ai tripletti stampati per il test di spinta, con la sola differenza di essere fabbricati in modo diverso. Il test è stato condotto allo scopo di confermare se l'innesco e la propagazione delle crepe si verificassero in modo coerente lungo le interfacce dei tripletti, evidenziandoli come punti deboli strutturali, con questa interfaccia che funge anche da interfaccia interstrato. I risultati del test di spinta hanno dimostrato che, mentre i campioni 3DPC stampati monoliticamente mostrano generalmente una maggiore resistenza grazie alla loro struttura continua, gli assemblaggi con legante epossidico rappresentano un'alternativa pratica e conveniente. Nonostante una leggera riduzione della resistenza, i giunti epossidici hanno mostrato prestazioni costanti, con la maggior parte dei cedimenti che si sono verificati nel substrato di calcestruzzo piuttosto che all'interfaccia di legame, a indicare un livello affidabile di adesione. Dal test di estrazione, si è concluso, come previsto e come emerso dalla letteratura, che per il calcestruzzo tradizionale, all'aumentare della lunghezza di ancoraggio, la forza di estrazione necessaria per la rottura aumenta, il che significa che, poiché il legame tra il calcestruzzo e l'armatura in acciaio è ora più lungo, è necessaria una maggiore resistenza per l'estrazione. La forza di adesione è stata calcolata e si è osservata costante per le diverse lunghezze di inserimento, in linea con il presupposto di una forza di adesione uniforme per brevi lunghezze di inserimento nei test di estrazione. Dal test di forza semplice sui campioni 3DPC a forma di S, è stato ulteriormente consolidato e i risultati hanno concluso che il principale punto di debolezza in un campione 3DPC era l'interfaccia interstrato verticale, ovvero l'interfaccia tra le triplette. La differenza principale tra le triplette per il test di spinta e i campioni a forma di S per il test di forza semplice è che nel primo campione si osservano le proprietà di taglio dell'interfaccia interstrato orizzontale, mentre nel secondo si osservano le proprietà di taglio dell'interfaccia interstrato verticale. Questi risultati hanno dimostrato l'efficacia di questi test nella valutazione della resistenza di adesione interstrato e della resistenza di adesione tra l'armatura e il calcestruzzo nel caso del 3DPC, poiché, a causa della natura piuttosto recente del 3DPC, non sono state definite linee guida standard per i test su questo materiale. Per ulteriori ricerche, è possibile condurre ulteriori esperimenti e ricerche per migliorare ulteriormente i legami interstrato nel 3DPC e la resistenza di adesione tra l'armatura e il 3DPC in modi molto più dettagliati. Ad esempio, utilizzando agenti epossidici per migliorare la resistenza del legame interstrato, al fine di migliorare la resistenza del 3DPC, e la resistenza del legame tra la barra d'armatura e il 3DPC, per migliorare rispettivamente i risultati dei test di spinta e di estrazione.
Bond performance and interface behaviour in 3D printed concrete: evaluation through shear and pull-out testing
SAAD, MOHAMMAD BIN
2024/2025
Abstract
3D Printing of Concrete is the printing of concrete using digital fabrication techniques. It refers to various digital fabrication techniques for cementitious materials based on one of the many different 3D printing techniques. In the current age, the construction industry is going on a rapid industrialization ranging from production methods to the building methods as can be seen by the shifting of the traditional method of mixing and casting concrete on site onto various pre-cast or pre-fabrication construction techniques in many of the developing and industrialized countries. 3D Printed Concrete (3DPC) is one of these new methods that have arisen from this rapid industrialization. There are several differences between the 3DPC and the traditionally cast concrete which has led to a great need of research into these differences. To understand the limitations and potential of 3D Printed Concrete (3DPC), a comparative study was conducted between both 3DPC and traditionally cast concrete Push-off tests were conducted with three different kinds of specimens known as triplets. The first two being where monolithically cast traditional concrete and traditionally cast concrete blocks joined using epoxy with two different kinds of epoxy being used for this purpose were used and the last kind of specimen were the 3DPC specimens printed as a single unit. Two different test setups were used for conducting the push-off test with the difference being the presence of horizontal constraints. The push-off test was conducted with the purpose of investigating the applicability of printing 3DPC as separate blocks and then joining them through epoxy with particular focus on understanding the interlayer bond strength and behaviour. Similarly, the pull-out test was also conducted with the same purpose as the push-off test with three different kinds of specimens being tested. One was the traditionally cast concrete with the steel rebars of 5mm used were inserted into its centre and the other two were 3DPC specimens where the steel rebars were inserted in the direction parallel to the printed layers and the other where the steel rebars were inserted in the direction perpendicular to the layers. The pull-out test was conducted with the purpose of evaluating the bond strength between the concrete and the rebar and to see the influence of interlayer orientation on anchorage performance in 3DPC specimens. A simple test involving force being applied at the centre of 3DPC specimens that printed in a S-Shape was conducted. These 3DPC S-Shape specimens were the same as the triplets printed for the push-off test with only being manufactured differently. The test was conducted with the purpose of confirming whether crack initiation and propagation consistently occurred along the triplet interfaces, highlighting them as structural weak points with this triplet interface also acting as an interlayer interface too. The results from the push-off test demonstrated that while monolithically printed 3DPC specimens generally exhibit higher strength due to their continuous structure, epoxy-bonded assemblies present a practical and convenient alternative. Despite a slight reduction in strength, epoxy joints showed consistent performance, with most failures occurring in the concrete substrate rather than at the bond interface, indicating a reliable level of adhesion. From the pull-out test, it was concluded as expected and seen from the literature that for the traditional concrete that as the embedment length increases the pull-out force required for failure increases that means as the bond between the concrete and the steel rebar is now longer so more strength is required for pull-out. The bond strength was calculated and observed to be constant over the different embedment lengths that aligned with the assumption of assuming uniform bond strength over short embedment lengths in pull-out tests. From the simple force test on the 3DPC S-Shape specimens, it was further cemented and concluded from the results that the major point of weakness in a 3DPC specimen was the vertical interlayer interface that is the interface between the triplets. The key difference between the triplets for the push-off test and the S-Shape specimens for the simple force test being the first specimen the shear properties of the horizontal interlayer interface is seen and for the latter the shear properties of the vertical interlayer interface is seen. These results displayed the effectiveness of these tests in the evaluation of interlayer bond strength and the bond strength between the rebar and the concrete in the case of 3DPC as due to the rather new nature of 3DPC, there have been no standard guidelines for testing being defined for 3DPC. For further research, more experiments and research can be done on further improving the interlayer bonds in 3DPC and the bond strength between the rebar and 3DPC in much more detailed ways. Such as using epoxy agents to improve the interlayer bond strength to improve the strength of the 3DPC and the bond strength between the rebar and the 3DPC to improve the push-off and pull-out test results, respectively.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Saad_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: The Thesis Report.
Dimensione
8.53 MB
Formato
Adobe PDF
|
8.53 MB | Adobe PDF | Visualizza/Apri |
2025_07_Saad_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary of the Thesis Report.
Dimensione
750.31 kB
Formato
Adobe PDF
|
750.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240395