This thesis explores the integration of process mining and simulation techniques to enhance Lean Management and Value Stream Mapping (VSM) in complex manufacturing environments. Traditional VSM shows that it is effective in identifying waste and optimizing workflows, but facing limitations due to its static and manual characteristics, particularly in dynamic and Industry 4.0 settings with rich data assets. To address these challenges, this study proposes a framework that combines process mining for data-driven process discovery and analysis with simulation for validating improvement strategies. The research begins with a literature review that highlights the gap in current applications of process mining and simulation in VSM. An improved framework is then introduced, structured into five stages: Planning, Data preparation, Current process analysis, Future process design, and Implementation. This framework leverages process mining to dynamically visualize value streams, identify inefficiencies, and analyse bottlenecks, while simulation models evaluate potential improvements before real-world deployment. An empirical case study of a metal parts manufacturing process is conducted for validating the framework. Process mining techniques are applied to event logs from an ERP system, revealing actual manufacturing process, deviations from ideal process, process inefficiency raised by repetitive activities and rework loops, time and resource performance. Key findings shows that prolonged setup times, waiting times, uneven machine utilization and repeated operations have contributed to significant throughput time delays. Simulation scenarios demonstrate that a 20% reduction in setup time can decrease average throughput time by 27% and waiting time by 69%, while accommodating a 30% increase in order volume when facing with demand disruption. The study concludes that integrating process mining and simulation enhances VSM by providing real-time, data-driven insights and enabling risk-free validation of lean improvements. However, challenges including digital infrastructure requirements, data quality, and expertise knowledge must be addressed for successful implementation. This thesis made minor contribution to the lean methodologies in digitalized manufacturing, offering practical tools for continuous improvement in complex production environments.
Questa tesi esplora l'integrazione di tecniche di process mining e simulazione per migliorare il Lean Management e la Value Stream Mapping (VSM) in ambienti di produzione complessi. Il VSM tradizionale si dimostra efficace nell'identificare gli sprechi e nell'ottimizzare i flussi di lavoro, ma presenta dei limiti dovuti alle sue caratteristiche statiche e manuali, in particolare in contesti dinamici e Industria 4.0 con un ricco patrimonio di dati. Per affrontare queste sfide, questo studio propone un framework che combina il process mining per l'individuazione e l'analisi dei processi basata sui dati con la simulazione per la convalida delle strategie di miglioramento. La ricerca inizia con una revisione della letteratura che evidenzia il divario nelle attuali applicazioni del process mining e della simulazione in VSM. Viene quindi introdotto un nuovo framework, strutturato in cinque fasi: pianificazione, preparazione dei dati, analisi del processo attuale, progettazione del processo futuro e implementazione. Questo framework sfrutta il process mining per visualizzare dinamicamente i flussi di valore, identificare le inefficienze e analizzare i colli di bottiglia, mentre i modelli di simulazione valutano i potenziali miglioramenti prima dell'implementazione nel mondo reale. Per convalidare il framework, viene condotto uno studio di caso empirico di un processo di produzione di componenti metallici. Tecniche di process mining vengono applicate ai registri eventi di un sistema ERP, rivelando il processo di produzione effettivo, le deviazioni dal processo ideale, l'inefficienza di processo causata da attività ripetitive e cicli di rilavorazione, nonché le prestazioni in termini di tempo e risorse. I risultati principali mostrano che tempi di attrezzaggio prolungati, tempi di attesa, utilizzo non uniforme delle macchine e operazioni ripetute hanno contribuito a ritardi significativi nei tempi di produzione. Gli scenari di simulazione dimostrano che una riduzione del 20% dei tempi di attrezzaggio può ridurre il tempo di produzione medio del 27% e i tempi di attesa del 69%, compensando al contempo un aumento del 30% del volume degli ordini in caso di interruzione della domanda. Lo studio conclude che l'integrazione di process mining e simulazione migliora la VSM fornendo informazioni in tempo reale basate sui dati e consentendo una convalida senza rischi dei miglioramenti lean. Tuttavia, per un'implementazione di successo, è necessario affrontare sfide quali i requisiti dell'infrastruttura digitale, la qualità dei dati e la conoscenza delle competenze. Questa tesi ha contribuito in modo marginale alle metodologie lean nella produzione digitalizzata, offrendo strumenti pratici per il miglioramento continuo in ambienti di produzione complessi.
Lean management in complex manufacturing environments enhanced by process mining and simulation
Xia, Qisheng
2024/2025
Abstract
This thesis explores the integration of process mining and simulation techniques to enhance Lean Management and Value Stream Mapping (VSM) in complex manufacturing environments. Traditional VSM shows that it is effective in identifying waste and optimizing workflows, but facing limitations due to its static and manual characteristics, particularly in dynamic and Industry 4.0 settings with rich data assets. To address these challenges, this study proposes a framework that combines process mining for data-driven process discovery and analysis with simulation for validating improvement strategies. The research begins with a literature review that highlights the gap in current applications of process mining and simulation in VSM. An improved framework is then introduced, structured into five stages: Planning, Data preparation, Current process analysis, Future process design, and Implementation. This framework leverages process mining to dynamically visualize value streams, identify inefficiencies, and analyse bottlenecks, while simulation models evaluate potential improvements before real-world deployment. An empirical case study of a metal parts manufacturing process is conducted for validating the framework. Process mining techniques are applied to event logs from an ERP system, revealing actual manufacturing process, deviations from ideal process, process inefficiency raised by repetitive activities and rework loops, time and resource performance. Key findings shows that prolonged setup times, waiting times, uneven machine utilization and repeated operations have contributed to significant throughput time delays. Simulation scenarios demonstrate that a 20% reduction in setup time can decrease average throughput time by 27% and waiting time by 69%, while accommodating a 30% increase in order volume when facing with demand disruption. The study concludes that integrating process mining and simulation enhances VSM by providing real-time, data-driven insights and enabling risk-free validation of lean improvements. However, challenges including digital infrastructure requirements, data quality, and expertise knowledge must be addressed for successful implementation. This thesis made minor contribution to the lean methodologies in digitalized manufacturing, offering practical tools for continuous improvement in complex production environments.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_xia.pdf
non accessibile
Descrizione: Text of the thesis
Dimensione
4.84 MB
Formato
Adobe PDF
|
4.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240459