Recent efforts in the unification of quantum theory (QT) and general relativity have led to the development of two main lines of research in the foundations of quantum mechanics: generalized probabilistic theories (GPTs) [1] and higher-order frameworks [2–4]. While the former allow to explore alternative theories to QT, the latter aim at investigating the role of causality in such theories. In higher-order frameworks the main concept is that of a process. This object expresses the most general form of communication between parties when no definite causal order is assumed among them. By definition, a process must yield valid outcome statistics (termed correlations) when composed with the local operations of the parties. In this work we investigate the role of causality in one specific GPT, known as boxworld, whose main characteristic is that of having the largest possible composite state space allowed by GPTs. We first show how all measurements allowed by boxworld [5] are equivalent to classical processes. This reveals how such measurements can be implemented simply via classical communications with or without a definite causal order. Further, we focus on higher-order boxworld theory, whose main objects are process tensors (PTs). After generalizing the framework to multipartite scenarios, we find that all boxworld measurements can be implemented in higher-order boxworld theory. This highlights a peculiar difference between the structure of PTs and that of their quantum analog, process matrices (PMs). Indeed, PMs allow only a small subset of all valid quantum measurements to be implemented. We then investigate the structure of boxworld operations by comparing them with sequential applications of two classical local operations. Finally, we define and analyze the boxworld version of the classical tripartite Lugano process. We find that using such a process one can obtain the maximal violation of a tripartite version of the LGYNI causal inequality - the signaling analog of a Bell inequality - which no PM can achieve. This result provides further evidence for the conjecture that PTs can be used to obtain a non-trivial outer approximation to the set of PMs correlations [4].
Recenti sforzi nell’unificazione della teoria quantistica (QT) e della relatività generale hanno portato allo sviluppo di due principali linee di ricerca nelle fondamenta della meccanica quantistica: le teorie probabilistiche generalizzate (GPT) [1] e i framework di ordine superiore [2–4]. Le prime consentono di esplorare teorie alternative alla QT, mentre i secondi si concentrano sullo studio della causalità in tali teorie. Nei framework di ordine superiore, il concetto centrale è quello di processo, che rappresenta la forma più generale di comunicazione tra più parti in assenza di un ordine causale definito. Per definizione, un processo deve produrre statistiche di esito valide (dette correlazioni) quando composto con operazioni locali arbitrarie. Questa tesi analizza il ruolo della causalità in una GPT nota come boxworld, una teoria che presenta lo spazio degli stati compositi più ampio ammesso dalle GPT. Innanzitutto, viene dimostrato che tutte le misure in boxworld [5] sono equivalenti a processi classici, risultando quindi implementabili tramite comunicazioni classiche con o senza un ordine causale definito. Viene poi analizzato il framework di ordine superiore associato a boxworld, i cui oggetti fondamentali sono i tensori di processo (PT). Dopo aver esteso tale formalismo al caso multipartito, si mostra che tutte le misure ammissibili in boxworld possono essere realizzate anche tramite il framework dei PT. Questo risultato rivela una differenza strutturale tra PT e i loro analoghi quantistici, le matrici di processo (PM), che permettono di implementare solo un sottoinsieme proprio delle misure quantistiche. Successivamente, vengono confrontate le operazioni locali in boxworld con composizioni sequenziali di operazioni locali classiche. Infine, viene definito uno specifico PT, analogo al processo classico di Lugano, che consente la massima violazione di una versione tripartita della disuguaglianza causale LGYNI, un valore non raggiungibile da alcuna PM. Tale risultato fornisce ulteriore supporto alla congettura secondo cui i PT possono essere usati per ottenere un’approssimazione esterna non-banale dell’insieme di correlazioni realizzabili tramite PM [4].
Investigating the role of causality in boxworld theory
Trespidi, Giorgio
2024/2025
Abstract
Recent efforts in the unification of quantum theory (QT) and general relativity have led to the development of two main lines of research in the foundations of quantum mechanics: generalized probabilistic theories (GPTs) [1] and higher-order frameworks [2–4]. While the former allow to explore alternative theories to QT, the latter aim at investigating the role of causality in such theories. In higher-order frameworks the main concept is that of a process. This object expresses the most general form of communication between parties when no definite causal order is assumed among them. By definition, a process must yield valid outcome statistics (termed correlations) when composed with the local operations of the parties. In this work we investigate the role of causality in one specific GPT, known as boxworld, whose main characteristic is that of having the largest possible composite state space allowed by GPTs. We first show how all measurements allowed by boxworld [5] are equivalent to classical processes. This reveals how such measurements can be implemented simply via classical communications with or without a definite causal order. Further, we focus on higher-order boxworld theory, whose main objects are process tensors (PTs). After generalizing the framework to multipartite scenarios, we find that all boxworld measurements can be implemented in higher-order boxworld theory. This highlights a peculiar difference between the structure of PTs and that of their quantum analog, process matrices (PMs). Indeed, PMs allow only a small subset of all valid quantum measurements to be implemented. We then investigate the structure of boxworld operations by comparing them with sequential applications of two classical local operations. Finally, we define and analyze the boxworld version of the classical tripartite Lugano process. We find that using such a process one can obtain the maximal violation of a tripartite version of the LGYNI causal inequality - the signaling analog of a Bell inequality - which no PM can achieve. This result provides further evidence for the conjecture that PTs can be used to obtain a non-trivial outer approximation to the set of PMs correlations [4].File | Dimensione | Formato | |
---|---|---|---|
2025_7_Trespidi_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: tesi
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri |
2025_7_Trespidi_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
796.22 kB
Formato
Adobe PDF
|
796.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240463