The aorta is the main artery in the human body. Its anatomy, compliance and hemodynamics play a crucial role in different interventional procedures, such as transcatheter aortic valve replacement (TAVR) and transcatheter endovascular aortic repair (TEVAR).The development of devices and techniques to perform such procedures, as well as the training of operators, can benefit from in vitro simulators. However, for these to be realistic it is crucial to realistically replicate the in vivo aortic compliance, which results from the geometry of the aorta, the mechanical properties of the aortic wall, and the deformable constraint provided by the surrpunding tissues. This thesis presents the design and characterization of a compliance-controlled chamber hosting an aortic phantom within a sealed air–water system. The goal is to mimic physiological compliance by regulating the external pressure applied to the phantom. A hyperelastic constitutive model based on the Mooney–Rivlin formulation is used to describe the mechanical behavior of the aortic wall, and theoretical stress–strain relationships are derived to evaluate changes in volume and diameter under dynamic pressure conditions. The chamber is specifically optimized to reproduce physiological distensibility by tuning external boundary conditions. This setup is capable of achieving physiological compliance and supporting both steady and pulsatile flow regimes. Finally, a Windkessel-based lumped parameter model is developed to provide a first-order estimation of the phantom’s pressure–flow characteristics.
L’aorta è la principale arteria del corpo umano. La sua anatomia, compliance ed emodinamica giocano un ruolo cruciale in diverse procedure interventistiche, come la sostituzione transcatetere della valvola aortica (TAVR) e la riparazione endovascolare transcatetere dell’aorta (TEVAR). Lo sviluppo di dispositivi e tecniche per eseguire tali procedure, così come la formazione degli operatori, può trarre beneficio dai simulatori in vitro. Tuttavia, affinché questi siano realistici, è fondamentale replicare accuratamente la compliance aortica in vivo, che risulta dalla geometria dell’aorta, dalle proprietà meccaniche della parete aortica e dal vincolo deformabile fornito dai tessuti circostanti. Questa tesi presenta la progettazione e la caratterizzazione di una camera a compliance controllata, in grado di ospitare un fantoccio aortico all’interno di un sistema sigillato ad aria e acqua. L’obiettivo è imitare la compliance fisiologica regolando la pressione esterna applicata al fantoccio. Un modello costitutivo iperelastico basato sulla formulazione di Mooney–Rivlin è utilizzato per descrivere il comportamento meccanico della parete aortica, e vengono derivate relazioni teoriche sforzo–deformazione per valutare le variazioni di volume e diametro in condizioni di pressione dinamica. La camera è specificamente ottimizzata per riprodurre la distensibilità fisiologica tramite la regolazione delle condizioni al contorno esterne. Il sistema è in grado di raggiungere la compliance fisiologica e di supportare sia flussi stazionari che pulsati. Infine, viene sviluppato un modello lumped parameter basato su Windkessel per fornire una prima stima delle caratteristiche pressione-flusso del fantoccio.
Design of a compliance-controlled camber for an aortic phantom: hyperelastic characterization and windkessel modeling
Hoseinikhah, Seyed Mahdi
2024/2025
Abstract
The aorta is the main artery in the human body. Its anatomy, compliance and hemodynamics play a crucial role in different interventional procedures, such as transcatheter aortic valve replacement (TAVR) and transcatheter endovascular aortic repair (TEVAR).The development of devices and techniques to perform such procedures, as well as the training of operators, can benefit from in vitro simulators. However, for these to be realistic it is crucial to realistically replicate the in vivo aortic compliance, which results from the geometry of the aorta, the mechanical properties of the aortic wall, and the deformable constraint provided by the surrpunding tissues. This thesis presents the design and characterization of a compliance-controlled chamber hosting an aortic phantom within a sealed air–water system. The goal is to mimic physiological compliance by regulating the external pressure applied to the phantom. A hyperelastic constitutive model based on the Mooney–Rivlin formulation is used to describe the mechanical behavior of the aortic wall, and theoretical stress–strain relationships are derived to evaluate changes in volume and diameter under dynamic pressure conditions. The chamber is specifically optimized to reproduce physiological distensibility by tuning external boundary conditions. This setup is capable of achieving physiological compliance and supporting both steady and pulsatile flow regimes. Finally, a Windkessel-based lumped parameter model is developed to provide a first-order estimation of the phantom’s pressure–flow characteristics.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Hoseinikhah.pdf
non accessibile
Dimensione
6.38 MB
Formato
Adobe PDF
|
6.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240472