As lunar missions progress, resource-efficient manufacturing becomes vital. ISRU, especially using lunar regolith, offers a way to reduce reliance on Earth. While regolith-based additive manufacturing has been explored for ceramic components, and sources of aluminum on the Moon have been identified—such as regolith extraction and orbital recycling—there is limited research on how to process and shape this aluminum once available. This work addresses that gap by developing and optimizing 3D-printed regolith molds for aluminum casting under lunar-relevant conditions. In this work, casting molds were additively manufactured using a DLP printer in the form of thin shells to minimize material and energy consumption—critical constraints under lunar conditions. As a baseline, castings were also performed in compressed regolith and traditional sand molds. The 3D-printed regolith shells significantly outperformed the compressed regolith molds, which failed to fill properly due to poor wetting, leading to high porosity and reduced mechanical performance. In contrast, the shell molds enabled complete filling, excellent surface finish, minimal porosity (0.09%), and mechanical properties comparable to ASTM standards. Shell thickness was varied to optimize trade-offs between resource efficiency, mold durability, and casting quality. The 1.9 mm shell emerged as the optimal configuration, yielding the best combination of microhardness (66.2 VHN), ultimate tensile strength (188.9 MPa), and refined dendritic structure (SDAS: 34.7 µm), with 33% of molds reusable after one casting cycle. Additionally, intricate miniature parts—such as a 5 mm wrench key—were successfully produced. To investigate the feasibility of casting under lunar gravity, simulations were performed and confirmed that aluminum casting is viable, with slightly longer filling times but overall comparable quality to Earth-based results.
Con il progresso delle missioni lunari, diventa fondamentale sviluppare metodi di produzione efficienti in termini di risorse. L'ISRU, in particolare l'utilizzo della regolite lunare, offre una via promettente per ridurre la dipendenza dalla Terra. Sebbene siano già stati esplorati metodi di manifattura additiva con regolite per la produzione di componenti ceramici e siano state individuate fonti potenziali di alluminio sulla Luna—come l’estrazione dalla regolite e il riciclo orbitale—esistono ancora pochi studi su come lavorare e modellare questo alluminio una volta disponibile. Questo lavoro colma tale lacuna sviluppando e ottimizzando stampi in regolite stampati in 3D per la colata di alluminio in condizioni rilevanti per l’ambiente lunare. Gli stampi sono stati fabbricati additivamente mediante una stampante DLP sotto forma di gusci sottili, per ridurre al minimo il consumo di materiale ed energia—risorse particolarmente critiche in ambiente lunare. Come riferimento, sono stati eseguiti anche esperimenti di colata in stampi di regolite compressa e in sabbia tradizionale. I gusci stampati in 3D hanno superato nettamente la regolite compressa, che non ha permesso un corretto riempimento dello stampo a causa di un cattivo bagnamento, provocando alta porosità e proprietà meccaniche ridotte. Al contrario, gli stampi a guscio hanno consentito un riempimento completo, una finitura superficiale eccellente, porosità minima (0,09%) e proprietà meccaniche in linea con gli standard ASTM. Lo spessore del guscio è stato variato per ottimizzare il compromesso tra efficienza delle risorse, durabilità dello stampo e qualità del getto. Il guscio da 1,9 mm si è rivelato la configurazione ottimale, offrendo la migliore combinazione di microdurezza (66,2 VHN), resistenza a trazione ultima (188,9 MPa) e struttura dendritica raffinata (SDAS: 34,7 µm), con il 33% degli stampi riutilizzabili dopo un ciclo di colata. Inoltre, sono stati realizzati con successo componenti miniaturizzati complessi—come una chiave inglese da 5 mm. Per valutare la fattibilità della colata in gravità lunare, sono state condotte simulazioni che hanno confermato la validità del processo, con tempi di riempimento leggermente più lunghi ma qualità finale comparabile ai risultati ottenuti sulla Terra.
ISRU-oriented aluminum casting using 3D-printed regolith molds
SADEGHI, MASOUD
2024/2025
Abstract
As lunar missions progress, resource-efficient manufacturing becomes vital. ISRU, especially using lunar regolith, offers a way to reduce reliance on Earth. While regolith-based additive manufacturing has been explored for ceramic components, and sources of aluminum on the Moon have been identified—such as regolith extraction and orbital recycling—there is limited research on how to process and shape this aluminum once available. This work addresses that gap by developing and optimizing 3D-printed regolith molds for aluminum casting under lunar-relevant conditions. In this work, casting molds were additively manufactured using a DLP printer in the form of thin shells to minimize material and energy consumption—critical constraints under lunar conditions. As a baseline, castings were also performed in compressed regolith and traditional sand molds. The 3D-printed regolith shells significantly outperformed the compressed regolith molds, which failed to fill properly due to poor wetting, leading to high porosity and reduced mechanical performance. In contrast, the shell molds enabled complete filling, excellent surface finish, minimal porosity (0.09%), and mechanical properties comparable to ASTM standards. Shell thickness was varied to optimize trade-offs between resource efficiency, mold durability, and casting quality. The 1.9 mm shell emerged as the optimal configuration, yielding the best combination of microhardness (66.2 VHN), ultimate tensile strength (188.9 MPa), and refined dendritic structure (SDAS: 34.7 µm), with 33% of molds reusable after one casting cycle. Additionally, intricate miniature parts—such as a 5 mm wrench key—were successfully produced. To investigate the feasibility of casting under lunar gravity, simulations were performed and confirmed that aluminum casting is viable, with slightly longer filling times but overall comparable quality to Earth-based results.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025-07-Sadeghi-Executive Summary.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
|
2025-07-Sadeghi-Thesis.pdf
accessibile in internet per tutti
Descrizione: thesis text
Dimensione
6.77 MB
Formato
Adobe PDF
|
6.77 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240498