InGaAs/InP Single-Photon Avalanche Diodes (SPADs) are commonly used for photon detection in the short-wave infrared (SWIR) range, especially around 1550 nm. This spectral range is ideal for long-distance and eye-safe optical communication, in both open-air and fiber-based systems. One of the most relevant applications of these detectors is Quantum Key Distribution (QKD), a secure communication technique based on the principles of quantum mechanics. To achieve high key generation rates, QKD systems require single-photon detectors that are fast, have low noise, and offer low timing jitter. In particular, the fast gating technique with short gate-on times at high repetition rate is important for InGaAs/InP SPAD detectors in order to mitigate afterpulsing, thus enabling high detection rates. This thesis focuses on the development and characterization of an electronic system designed to test an integrated circuit, developed at Politecnico di Milano in the SPADlab research group, fabricated in the C40 CMOS technology by STMicroelectronics, specifically intended to drive a single InGaAs/InP SPAD in fast gated mode (up to 1 GHz repetition rate) and with short TON duration (in the order of hundreds of picoseconds), to reduce afterpulsing probability. A custom PCB was developed to implement all the required control logic circuits. In particular, a high-speed differential logic was designed to generate short and programmable gate pulses, with gate-on times (TON) as low as few hundreds of picoseconds. The board supports two selectable GATE paths, allowing it to operate either as a master, with an onboard oscillator, or as a slave to an external trigger. Additionally, a configurable hold-off time (i.e., the period during which the SPAD is kept inactive after a photon detection) was implemented: when a photon is detected, as signalled by either the rising or falling edge of the chip’s output signal, a synchronous differential logic disables the gate signal for a programmable duration, helping to suppress afterpulsing, a strong drawback of InGaAs/InP SPADs. To further improve photon detection reliability, a masking circuit was also implemented. At a gating frequency of 1 GHz, due to intrinsic delays in the system, the gate can be effectively disabled only after about 1.2 ns. As a result, unwanted closely spaced events may still appear at the output, either due to residual gate activity or an afterpulsing event occurring shortly after a valid detection. To prevent this, a monostable circuit masks the chip output, avoiding the display of such spurious detections to the user. The system was initially tested using a CMOS SPAD to simplify the experimental setup, as it can be operated without any cooling system. A graphical user interface (GUI), developed in LabVIEW, was developed to control the system parameters, and a series of measurements was performed to evaluate the performance and limitations of the chip and the board. Finally, a second chip carrier was designed to be compatible with InGaAs/InP SPADs and the required cooling, enabling future experimental validation. The work presented in this thesis provides a flexible and scalable platform for driving and testing SPADs in high-speed applications such as QKD systems.
I fotorivelatori InGaAs/InP SPAD (single-photon avalanche diode) sono comunemente utilizzati per la rivelazione di fotoni nell’infrarosso a onde corte (SWIR), in particolare intorno a 1550 nm. Questo intervallo spettrale è ideale per comunicazioni ottiche a lunga distanza e sicure per l’occhio, sia in spazio libero che in fibra ottica. Una delle applicazioni più rilevanti è la Quantum Key Distribution (QKD), una tecnica di comunicazione sicura basata sui principi della meccanica quantistica. Per ottenere alti tassi di generazione di chiavi, i sistemi QKD richiedono rivelatori a singolo fotone che siano veloci, a basso rumore e con basso jitter temporale. In particolare, il gating veloce con brevi tempi on è importante nei rivelatori InGaAs/InP SPAD per mitigare l’afterpulsing. Tali rivelatori utilizzano spesso l’abilitazione ad alta frequenza con brevi impulsi per sopprimere l’afterpulsing e permettere alti tassi di conteggio di singoli fotoni. Questa tesi si concentra sullo sviluppo e sulla caratterizzazione di un sistema elettronico progettato per testare un circuito integrato (IC) progettato per abilitazioni di SPAD ad alta velocità, sviluppato al Politecnico di Milano all’interno dello gruppo di ricerca SPADlab e fabbricato utilizzando la tecnologia C40 di STMicroelectronics, specificamente pensato per pilotare SPAD InGaAs/InP in modalità di “fast gating”. È stata progettata una scheda elettronica per implementare tutta la logica di controllo necessaria. In particolare, è stata sviluppata una logica differenziale ad alta velocità, in grado di generare impulsi di gate brevi e programmabili, con tempi di accensione (TON) di alcune centinaia di picosecondi. La scheda supporta due percorsi selezionabili per il segnale di GATE, consentendo il funzionamento sia in modalità master, tramite un oscillatore integrato, sia in modalità slave, ricevendo un trigger esterno. È stato inoltre implementato un tempo di hold-off configurabile (cioè l’intervallo di tempo durante il quale lo SPAD viene mantenuto inattivo dopo una rivelazione): quando un fotone viene rivelato, indicato dal fronte di salita o discesa del segnale di uscita del chip, una logica differenziale sincrona disabilita il segnale di gating per una durata programmabile, contribuendo a ridurre l’afterpulsing, che è un importante limite degli SPAD InGaAs/InP. Per migliorare ulteriormente l’affidabilità della rivelazione, è stata implementata anche una logica di mascheramento. Ad una frequenza di gating di 1 GHz, a causa dei ritardi intrinseci del sistema, il gate può essere disattivato efficacemente solo dopo circa 1.2 ns. Di conseguenza, eventi troppo ravvicinati possono ancora apparire in uscita. Per evitarlo, un circuito monostabile maschera il segnale di uscita del chip, impedendo all’utente di visualizzare rivelazioni spurie non desiderate. Il sistema è stato inizialmente testato utilizzando SPAD CMOS, che può lavorare senza alcun sistema di raffreddamento, al fine di semplificare la fase sperimentale. È stata sviluppata un’interfaccia grafica (GUI) in LabVIEW per il controllo dei parametri di sistema, e sono state eseguite una serie di misure per valutare le prestazioni e i limiti del chip e della scheda elettronica. Infine, è stata progettata una seconda scheda “carrier” compatibile con InGaAs/InP SPAD e con il relativo sistema di raffreddamento, con l’obiettivo di supportare future validazioni sperimentali. Il lavoro presentato in questa tesi fornisce una piattaforma elettronica flessibile e scalabile per il pilotaggio e il test di SPAD in applicazioni ad alta velocità, come la QKD.
Fast-gating InGaAs/InP SPAD module for 1GHz quantum key distribution systems
CINELLI, MATILDE
2024/2025
Abstract
InGaAs/InP Single-Photon Avalanche Diodes (SPADs) are commonly used for photon detection in the short-wave infrared (SWIR) range, especially around 1550 nm. This spectral range is ideal for long-distance and eye-safe optical communication, in both open-air and fiber-based systems. One of the most relevant applications of these detectors is Quantum Key Distribution (QKD), a secure communication technique based on the principles of quantum mechanics. To achieve high key generation rates, QKD systems require single-photon detectors that are fast, have low noise, and offer low timing jitter. In particular, the fast gating technique with short gate-on times at high repetition rate is important for InGaAs/InP SPAD detectors in order to mitigate afterpulsing, thus enabling high detection rates. This thesis focuses on the development and characterization of an electronic system designed to test an integrated circuit, developed at Politecnico di Milano in the SPADlab research group, fabricated in the C40 CMOS technology by STMicroelectronics, specifically intended to drive a single InGaAs/InP SPAD in fast gated mode (up to 1 GHz repetition rate) and with short TON duration (in the order of hundreds of picoseconds), to reduce afterpulsing probability. A custom PCB was developed to implement all the required control logic circuits. In particular, a high-speed differential logic was designed to generate short and programmable gate pulses, with gate-on times (TON) as low as few hundreds of picoseconds. The board supports two selectable GATE paths, allowing it to operate either as a master, with an onboard oscillator, or as a slave to an external trigger. Additionally, a configurable hold-off time (i.e., the period during which the SPAD is kept inactive after a photon detection) was implemented: when a photon is detected, as signalled by either the rising or falling edge of the chip’s output signal, a synchronous differential logic disables the gate signal for a programmable duration, helping to suppress afterpulsing, a strong drawback of InGaAs/InP SPADs. To further improve photon detection reliability, a masking circuit was also implemented. At a gating frequency of 1 GHz, due to intrinsic delays in the system, the gate can be effectively disabled only after about 1.2 ns. As a result, unwanted closely spaced events may still appear at the output, either due to residual gate activity or an afterpulsing event occurring shortly after a valid detection. To prevent this, a monostable circuit masks the chip output, avoiding the display of such spurious detections to the user. The system was initially tested using a CMOS SPAD to simplify the experimental setup, as it can be operated without any cooling system. A graphical user interface (GUI), developed in LabVIEW, was developed to control the system parameters, and a series of measurements was performed to evaluate the performance and limitations of the chip and the board. Finally, a second chip carrier was designed to be compatible with InGaAs/InP SPADs and the required cooling, enabling future experimental validation. The work presented in this thesis provides a flexible and scalable platform for driving and testing SPADs in high-speed applications such as QKD systems.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Cinelli_Executive Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
2025_07_Cinelli_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
5.83 MB
Formato
Adobe PDF
|
5.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240499