Smart windows represent a potential solution for increasing energy efficiency in buildings by controlling solar radiation to limit heating and cooling requirements. This study presents the fully self-powered smart window, which combines Luminescent Solar Concentrators (LSCs) with Electrochromic Devices (ECDs), eliminating the need for an external power source. The LSCs, containing the IR783 and IR140 dyes embedded in a poly(methyl methacrylate) (PMMA) matrix, absorb solar radiation and convert it into near-infrared (NIR) light, and then harvested by monocrystalline silicon photovoltaic (PV) cells. These cells generate sufficient power to operate the WO₃-based ECD and achieve reversible control of transparency depending on environmental conditions. The LSC coatings were fabricated by spin-coating on optical glass, and PV cells were integrated at the edges. The WO₃ electrochromic (EC) films were deposited onto ITO-coated substrates, which were plasma treated, through spin-coating of nanoparticle suspensions, followed by thermal annealing. If a battery is placed in the circuit, the system can store excess energy, ensuring continuous operation for over 3–4 days under cloudy or rainy conditions. The experimental results show that the integrated LSC-PV system provides stable and sufficient energy output to power the ECD under the effects of resistance change during coloration and bleaching. Increasing dye concentration in the LSC layer was found to enhance power generation and performance. This method is a cost-effective and long-lasting way to make buildings more energy-efficient by controlling solar gain, which cuts down on the need for air conditioning. The proposed technology represents a scalable and sustainable alternative to conventional smart windows, with significant implications for future building-integrated photovoltaic (BIPV) applications.
Le smart windows rappresentano una soluzione potenziale per aumentare l'efficienza energetica degli edifici, controllando la radiazione solare per ridurre la necessità di riscaldamento e raffreddamento. Questo studio presenta una smart window completamente autosufficiente, che combina Concentratori Solari Luminescenti (LSC) con Dispositivi Elettrocromici (ECD), eliminando la necessità di una fonte di alimentazione esterna. Gli LSC, contenenti i coloranti IR783 e IR140 incorporati in una matrice di poli(metil metacrilato) (PMMA), assorbono la radiazione solare e la convertono in luce vicino-infrarossa (NIR), che viene poi raccolta da celle fotovoltaiche (PV) in silicio monocristallino. Queste celle generano energia sufficiente per azionare l’ECD a base di WO₃ e ottenere un controllo reversibile della trasparenza in base alle condizioni ambientali. I rivestimenti LSC sono stati realizzati mediante spin-coating su vetro ottico, e le celle PV sono state integrate ai bordi. I film elettrocromici (EC) di WO₃ sono stati depositati su substrati rivestiti in ITO, sottoposti a trattamento al plasma, tramite spin-coating di sospensioni di nanoparticelle, seguito da ricottura termica. Se una batteria viene inserita nel circuito, il sistema può immagazzinare l’energia in eccesso, garantendo il funzionamento continuo per oltre 3–4 giorni in condizioni di cielo nuvoloso o pioggia. I risultati sperimentali mostrano che il sistema integrato LSC-PV fornisce un’uscita energetica stabile e sufficiente per alimentare l’ECD, anche durante le variazioni di resistenza durante la colorazione e la decolorazione. Si è riscontrato che l’aumento della concentrazione dei coloranti nello strato LSC migliora la generazione di energia e le prestazioni. Questo metodo rappresenta un modo economico e duraturo per rendere gli edifici più efficienti dal punto di vista energetico, controllando il guadagno solare e riducendo così il bisogno di climatizzazione. La tecnologia proposta rappresenta un’alternativa scalabile e sostenibile rispetto alle smart windows tradizionali, con importanti implicazioni per le future applicazioni fotovoltaiche integrate negli edifici (BIPV).
Photonically active smart windows with integrated luminescent solar concentrators and electrochromic device
MOLLAMOHAMMADI SADAFI, YEGANEH;Bagherzadeh, Amir Salar
2024/2025
Abstract
Smart windows represent a potential solution for increasing energy efficiency in buildings by controlling solar radiation to limit heating and cooling requirements. This study presents the fully self-powered smart window, which combines Luminescent Solar Concentrators (LSCs) with Electrochromic Devices (ECDs), eliminating the need for an external power source. The LSCs, containing the IR783 and IR140 dyes embedded in a poly(methyl methacrylate) (PMMA) matrix, absorb solar radiation and convert it into near-infrared (NIR) light, and then harvested by monocrystalline silicon photovoltaic (PV) cells. These cells generate sufficient power to operate the WO₃-based ECD and achieve reversible control of transparency depending on environmental conditions. The LSC coatings were fabricated by spin-coating on optical glass, and PV cells were integrated at the edges. The WO₃ electrochromic (EC) films were deposited onto ITO-coated substrates, which were plasma treated, through spin-coating of nanoparticle suspensions, followed by thermal annealing. If a battery is placed in the circuit, the system can store excess energy, ensuring continuous operation for over 3–4 days under cloudy or rainy conditions. The experimental results show that the integrated LSC-PV system provides stable and sufficient energy output to power the ECD under the effects of resistance change during coloration and bleaching. Increasing dye concentration in the LSC layer was found to enhance power generation and performance. This method is a cost-effective and long-lasting way to make buildings more energy-efficient by controlling solar gain, which cuts down on the need for air conditioning. The proposed technology represents a scalable and sustainable alternative to conventional smart windows, with significant implications for future building-integrated photovoltaic (BIPV) applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Mollamohammadi Sadafi_Bagherzadeh_Thesis_01.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: Thesis text
Dimensione
5.89 MB
Formato
Adobe PDF
|
5.89 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Mollamohammadi Sadafi_Bagherzadeh_Executive Summary_02.pdf
solo utenti autorizzati a partire dal 02/07/2026
Descrizione: Executive summary text
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240517