Rising CO₂ emissions have driven interest in CO₂-plume geothermal (CPG) plants, yet none exist commercially. Since CO₂ critical temperature is only 30.98 °C, a threshold often exceeded by summer ambient conditions, the rigorous prediction of subcritical condensation remains highly challenging, and condensation pressure directly governs cycle efficiency and the LCOE of the plant. An off-design framework integrates Basel seasonal weather profiles with a thirty-year levelized cost of energy (LCOE) analysis to compare five condenser technologies: fully air-dry cooled condenser, LU-VE dry-spray condenser, open-circuit cooling tower, closed-circuit cooling tower and hybrid cooling tower. Dry and dry-spray units employ NTU-based numerical schemes with convective zones, iterative energy/mass balances, pressure-drop calculations and fan performance maps. Open-circuit towers adopt Kroger’s evaporative heat-transfer method across the packing fill coupled with air-side losses. Closed-circuit towers replace packing with a wetted coil, simulating three-phase air–water–fluid refrigerant exchange via NTU and the Zannis correlation. Hybrid towers combine an upper air-cooled section with a lower evaporative section through a shared plenum. Models were validated in ASPEN ADR and Thermoflex, and a Random Forest trained on CPG operating conditions, predicts fan power and condenser cost for integration in TANGO, ETH Zurich techno-economic tool. Seasonal analysis of minimum-LCOE configurations shows summer peak power reductions of –5.6% , respect to winter peak, for the air-cooled condenser, –5.3% for the dry-spray, –23.1% for the open-circuit tower, –34.4% for the hybrid tower and –7.4% for the closed-circuit tower. Although dry-based condensers yield higher first-year energy, over thirty years sliding-pressure operation raises condensation pressures as ambient temperatures climb, increasing fan power consumption and reducing turbine net power. Cooling towers maintain lower, more stable pressures, limiting long-term net-power degradation and LCOE upward trend. Over thirty years the closed-circuit cooling tower achieves the lowest LCOE at $145.7 /MWh with 425 GWh produced; the open-circuit, hybrid, dry-spray and air-cooled condensers deliver 8.8%, 10.1%, 16.1% and 24.6% less energy, respectively.
L’aumento delle emissioni di CO₂ ha suscitato interesse per gli impianti geotermici a CO₂ Plume (CPG), mai realizzati su scala commerciale. Con un punto critico a 30,98 °C, spesso superato dalle temperature ambienti in estate, modellare la condensazione subcritica sotto condizioni variabili è particolarmente complesso, e la pressione di condensazione governa direttamente l’efficienza del ciclo e l'LCOE. Il framework off-design combina i profili stagionali di Basilea con un’analisi trentennale del LCOE per confrontare cinque condensatori: condensatore ad aria, dry-spray LU-VE, torre evaporativa aperta, torre chiusa e torre ibrida. I modelli dry e dry-spray, basati sul metodo NTU, suddividono l’unità in sezioni convettive, iterando bilanci di energia e massa, calcoli delle perdite di carico e mappe prestazionali dei ventilatori. Le torri aperte adottano il metodo Kroger per l’evaporazione del film d’acqua sul pacco di scambio termico con perdite lato aria; le torri chiuse sostituiscono il pacco con un fascio di tubi bagnato, modellando lo scambio aria-acqua-refrigerante via NTU e correlazione di Zannis; le torri ibride uniscono una sezione superiore ad aria e una inferiore evaporativa tramite plenum. I modelli sono stati validati in ASPEN ADR e Thermoflex, e un algoritmo Random Forest addestrato sulle condizioni operative CPG predice potenza ventilatori e costi per TANGO, il tool tecno-economico dell'ETH Zurich. L’analisi stagionale delle configurazioni a LCOE minimo evidenzia riduzioni di picchi estivi, rispetto a quelli invernali di –5,6% per il condensatore ad aria, –5,3% per dry-spray, –23,1% per torre aperta, –34,4% per torre ibrida e –7,4% per torre chiusa. Pur garantendo maggiore produzione nel primo anno, i sistemi dry subiscono, in 30 anni, un incremento delle pressioni di condensazione per effetto sliding-pressure estivo, con aumento dei consumi ventilatori e diminuzioni di potenza netta. Le torri evaporative, mantenendo pressioni più basse e stabili, limitano la degradazione della potenza netta e l’aumento del LCOE. Nel trentennio la torre a circuito chiuso ottiene l'LCOE più basso con 145,7 $/MWh e con 425 GWh prodotti; le configurazioni aperta, ibrida, dry-spray e ad aria erogano rispettivamente l’8,8%, il 10,1%, il 16,1% e il 24,6% energia in meno.
Numerical modelling and optimization of cooling systems for CO2 plume geothermal plants
Chianca, Giovanni
2024/2025
Abstract
Rising CO₂ emissions have driven interest in CO₂-plume geothermal (CPG) plants, yet none exist commercially. Since CO₂ critical temperature is only 30.98 °C, a threshold often exceeded by summer ambient conditions, the rigorous prediction of subcritical condensation remains highly challenging, and condensation pressure directly governs cycle efficiency and the LCOE of the plant. An off-design framework integrates Basel seasonal weather profiles with a thirty-year levelized cost of energy (LCOE) analysis to compare five condenser technologies: fully air-dry cooled condenser, LU-VE dry-spray condenser, open-circuit cooling tower, closed-circuit cooling tower and hybrid cooling tower. Dry and dry-spray units employ NTU-based numerical schemes with convective zones, iterative energy/mass balances, pressure-drop calculations and fan performance maps. Open-circuit towers adopt Kroger’s evaporative heat-transfer method across the packing fill coupled with air-side losses. Closed-circuit towers replace packing with a wetted coil, simulating three-phase air–water–fluid refrigerant exchange via NTU and the Zannis correlation. Hybrid towers combine an upper air-cooled section with a lower evaporative section through a shared plenum. Models were validated in ASPEN ADR and Thermoflex, and a Random Forest trained on CPG operating conditions, predicts fan power and condenser cost for integration in TANGO, ETH Zurich techno-economic tool. Seasonal analysis of minimum-LCOE configurations shows summer peak power reductions of –5.6% , respect to winter peak, for the air-cooled condenser, –5.3% for the dry-spray, –23.1% for the open-circuit tower, –34.4% for the hybrid tower and –7.4% for the closed-circuit tower. Although dry-based condensers yield higher first-year energy, over thirty years sliding-pressure operation raises condensation pressures as ambient temperatures climb, increasing fan power consumption and reducing turbine net power. Cooling towers maintain lower, more stable pressures, limiting long-term net-power degradation and LCOE upward trend. Over thirty years the closed-circuit cooling tower achieves the lowest LCOE at $145.7 /MWh with 425 GWh produced; the open-circuit, hybrid, dry-spray and air-cooled condensers deliver 8.8%, 10.1%, 16.1% and 24.6% less energy, respectively.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Chianca_Executive Summary.pdf
solo utenti autorizzati a partire dal 02/07/2028
Descrizione: Executive Summary Chianca Giovanni
Dimensione
4.5 MB
Formato
Adobe PDF
|
4.5 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Chianca_Tesi.pdf
solo utenti autorizzati a partire dal 02/07/2028
Descrizione: Tesi Chianca
Dimensione
22.33 MB
Formato
Adobe PDF
|
22.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240576