The photovoltaics (PV) represents one of the main technologies to make the energy transition from fossil fuels to renewable energies possible thanks to the scalability, modularity and a very little environmental impact. Over the years several types of energy systems based on the PV generation were created but all of them have in common the same physical working principle, that is the photovoltaic effect. This phenomenon, which is a subclass of the photoelectric effect discovered by Albert Einstein, consists of the passing of electrons generally belonging to a semiconductor from the valence band to the conduction band when a photon is absorbed. The device which allows to perform this type of power conversion is called solar cell. This device produces electricity in direct current (DC) form and, if the alternated current (AC) is desired, an electronic power converter named inverter has to be placed after it. One notable class of pv systems is the one of concentrating photovoltaic (CPV) modules. They are solar cells coupled with optical concentrators with the goal to generate energy using a very narrow area since they are smaller than the more traditional ones. The aim of this thesis is to propose an optical architecture of a low concentrating (LC) PV module conceived for those applications in which solar cells are integrated in different systems as sources of energy such as buildings. This device is designed to work coupled with two solar cells of different materials, that is different bandgaps. The optical structure has the role to split the radiation coming from the sun into two parts: visible light and infrared radiation and guide them to the cells. This is done in order to make the cells work in the most efficient way due to the matching between the bandgap value and the energy of photons which hit them. This is a project carried out by the IFN (Institute of Photonics and Nanotechnology) of the CNR (National research council), in particular its name is BISTROT. BISTROT stands for BIfacial SpecTRal splitting Optical concentrator for 4-Terminal photovoltaics. It is mainly addressed to small module sizes and provides a technology solution for two main possible application markets: Building-integrated photovoltaic solutions for zero-energy buildings, e.g., in photovoltaic blinds and active decorative elements Indoor photovoltaics, using indoor ambient light to power building services, with an Internet of Things (IoT) perspective supplying energy for domotics and control. This thesis is divided into 4 chapters: 1) The first chapter introduces photovoltaic cells and the optical technology that can be used in combination with them 2) The second one describes the whole optical system, how it is designed, the elements of which is composed of, its operation and how the sun position and its own geometry affects the overall efficiency 3) The third chapter aims to do an overview of the software Zemax Opticstudio, which is the one employed to develop all the simulations 4) The fourth chapter is devoted to show the results obtained using Zemax
Il fotovoltaico (FV) rappresenta una delle principali tecnologie per rendere possibile la transizione energetica dai combustibili fossili alle energie rinnovabili grazie alla lora scalabilità, modulabilità e il minimo impatto ambientale. Durante gli anni diversi tipi di sistemi energetici basati sulla generazione fotovoltaica sono stati creati, ma tutti loro hanno in comune lo stesso principio fisico di funzionamento, ovvero l’effetto fotovoltaico. Questo fenomeno, che è un caso particolare dell’effetto fotoelettrico scoperto da Albert Einstein, consiste nel passaggio di elettroni solitamente in semiconduttori dalla banda di valenza a quella di conduzione quando viene assorbito un fotone. Il dispositivo che permette di effettuare questo tipo di conversione di energia è chiamato cella solare. Questo dispositivo produce elettricità in forma di corrente continua (DC) e, se si desidera la corrente alternata (AC), è necessario collocare un convertitore elettronico di potenza chiamato inverter. Una classe notevole di sistemi fotovoltaici è quella dei moduli fotovoltaici a concentrazione (CPV). Si tratta di celle solari accoppiate a concentratori ottici con l'obiettivo di generare energia utilizzando un'area molto ristretta, poiché sono più piccoli di quelli più tradizionali. L'obiettivo di questa tesi è proporre un'architettura ottica di un modulo fotovoltaico a bassa concentrazione (LC) concepito per quelle applicazioni in cui le celle solari sono integrate in diversi sistemi come fonti di energia, ad esempio negli edifici. Questo dispositivo è stato progettato per funzionare accoppiato a due celle solari di materiali diversi, cioè con bandgap differenti. La struttura ottica ha il compito di dividere la radiazione proveniente dal sole in due parti: luce visibile e radiazione infrarossa e di guidarle verso le celle. Questo per far funzionare le celle nel modo più efficiente possibile, grazie alla corrispondenza tra il valore del bandgap e l'energia dei fotoni che le colpiscono. Si tratta di un progetto realizzato dalla sezione IFN (Istituto di fotonica e nanotecnologie) del CNR (Consiglio Nazionale delle Ricerche), in particolare il suo nome è BISTROT. BISTROT sta per BIfacial SpecTRal splitting Optical concentrator for 4-Terminal photovoltaics. Si rivolge principalmente a moduli di piccole dimensioni e fornisce una soluzione tecnologica per due possibili mercati applicativi principali: Soluzioni fotovoltaiche integrate nell'edificio per edifici a energia zero, ad esempio in tende fotovoltaiche ed elementi decorativi attivi Fotovoltaico interno, che utilizza la luce ambientale interna per alimentare i servizi dell'edificio, in un'ottica di Internet of Things (IoT), fornendo energia per la domotica e il controllo. Questa tesi è suddivisa in 4 capitoli: 1) Il primo capitolo introduce alle celle fotovoltaiche e alle tecnologie ottiche che possono essere utilizzate in combinazione con esse. 2) Il secondo descrive l'intero sistema ottico, come è stato progettato, gli elementi che lo compongono, il suo funzionamento e come la posizione del sole e la sua geometria influiscono sull'efficienza complessiva. 3) Il terzo capitolo ha lo scopo di fare una panoramica del software Zemax Opticstudio, che è quello utilizzato per sviluppare tutte le simulazioni 4) Il quarto capitolo è dedicato alla presentazione dei risultati ottenuti con Zemax e alle conclusioni finali.
Assymetric optical concentrator for 4-T terminal and spectral splitting photovoltaic modules: a study on geometry optimization
Ginesu, Carlo
2024/2025
Abstract
The photovoltaics (PV) represents one of the main technologies to make the energy transition from fossil fuels to renewable energies possible thanks to the scalability, modularity and a very little environmental impact. Over the years several types of energy systems based on the PV generation were created but all of them have in common the same physical working principle, that is the photovoltaic effect. This phenomenon, which is a subclass of the photoelectric effect discovered by Albert Einstein, consists of the passing of electrons generally belonging to a semiconductor from the valence band to the conduction band when a photon is absorbed. The device which allows to perform this type of power conversion is called solar cell. This device produces electricity in direct current (DC) form and, if the alternated current (AC) is desired, an electronic power converter named inverter has to be placed after it. One notable class of pv systems is the one of concentrating photovoltaic (CPV) modules. They are solar cells coupled with optical concentrators with the goal to generate energy using a very narrow area since they are smaller than the more traditional ones. The aim of this thesis is to propose an optical architecture of a low concentrating (LC) PV module conceived for those applications in which solar cells are integrated in different systems as sources of energy such as buildings. This device is designed to work coupled with two solar cells of different materials, that is different bandgaps. The optical structure has the role to split the radiation coming from the sun into two parts: visible light and infrared radiation and guide them to the cells. This is done in order to make the cells work in the most efficient way due to the matching between the bandgap value and the energy of photons which hit them. This is a project carried out by the IFN (Institute of Photonics and Nanotechnology) of the CNR (National research council), in particular its name is BISTROT. BISTROT stands for BIfacial SpecTRal splitting Optical concentrator for 4-Terminal photovoltaics. It is mainly addressed to small module sizes and provides a technology solution for two main possible application markets: Building-integrated photovoltaic solutions for zero-energy buildings, e.g., in photovoltaic blinds and active decorative elements Indoor photovoltaics, using indoor ambient light to power building services, with an Internet of Things (IoT) perspective supplying energy for domotics and control. This thesis is divided into 4 chapters: 1) The first chapter introduces photovoltaic cells and the optical technology that can be used in combination with them 2) The second one describes the whole optical system, how it is designed, the elements of which is composed of, its operation and how the sun position and its own geometry affects the overall efficiency 3) The third chapter aims to do an overview of the software Zemax Opticstudio, which is the one employed to develop all the simulations 4) The fourth chapter is devoted to show the results obtained using ZemaxFile | Dimensione | Formato | |
---|---|---|---|
Thesis Carlo Ginesu.pdf
accessibile in internet per tutti
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
Thesis_Carlo Ginesu.pdf
accessibile in internet per tutti
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240579