Just as quantum physics generalizes classical physics, quantum information theory extends Shannon's classical information theory, introducing a vast array of tools that make it suitable for analyzing and processing information in quantum systems. Its applications also extend to the description of biological processes that are believed to possess an intrinsic quantum nature, potentially exploiting non-trivial quantum effects — such as tunneling and superposition — to enhance their efficiency. At the same time, significant efforts are being devoted to the development of quantum computers, with the goal of building reliable machines capable of simulating complex quantum processes. In this thesis, referring to previous studies that modeled the transfer of genetic information between DNA and proteins as a quantum communication system, we show how the introduction of quantum coherence between codons that encode for the same protein leads to a gain of mutual information between DNA and proteins with respect to the classical case. We give a description of the quantum biological channel as a convex combination of extreme channels that permit to build a quantum circuit with a limited number of CNOT gates. Finally, we perform a Monte Carlo simulation to demonstrate the asymptotic convergence of the capacity evaluated through the quantum circuit implementation to the theoretical value.
Così come la fisica quantistica generalizza la fisica classica, la teoria dell’informazione quantistica estende la teoria classica di Shannon, introducendo strumenti che permettono di analizzare e processare l’informazione nei sistemi quantistici. Le sue applicazioni si estendono anche alla descrizione di processi biologici che si ritiene abbiano una natura intrinsecamente quantistica, potenzialmente sfruttando effetti quantistici non banali, come il tunneling e la sovrapposizione, per aumentarne l’efficienza. In questa tesi, basandoci su studi precedenti che modellano il trasferimento di informazione genetica tra DNA e proteine come un sistema di comunicazione quantistico, mostriamo come l’introduzione di coerenza quantistica tra codoni che codificano per la stessa proteina porti a un incremento dell’informazione mutua tra DNA e proteine rispetto al caso classico. Descriviamo il canale biologico quantistico come combinazione convessa di canali estremi che consente la costruzione di un circuito quantistico con un numero contenuto di porte CNOT. Infine, eseguiamo una simulazione Monte Carlo per mostrare la convergenza asintotica della capacità calcolata tramite il circuito ai risultati teorici.
Quantum information-theoretic analysis of DNA communication: channel capacity, decomposition, and synthesis
Barbaro, Alessandro
2024/2025
Abstract
Just as quantum physics generalizes classical physics, quantum information theory extends Shannon's classical information theory, introducing a vast array of tools that make it suitable for analyzing and processing information in quantum systems. Its applications also extend to the description of biological processes that are believed to possess an intrinsic quantum nature, potentially exploiting non-trivial quantum effects — such as tunneling and superposition — to enhance their efficiency. At the same time, significant efforts are being devoted to the development of quantum computers, with the goal of building reliable machines capable of simulating complex quantum processes. In this thesis, referring to previous studies that modeled the transfer of genetic information between DNA and proteins as a quantum communication system, we show how the introduction of quantum coherence between codons that encode for the same protein leads to a gain of mutual information between DNA and proteins with respect to the classical case. We give a description of the quantum biological channel as a convex combination of extreme channels that permit to build a quantum circuit with a limited number of CNOT gates. Finally, we perform a Monte Carlo simulation to demonstrate the asymptotic convergence of the capacity evaluated through the quantum circuit implementation to the theoretical value.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Barbaro.pdf
accessibile in internet per tutti
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary_Barbaro.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
433.39 kB
Formato
Adobe PDF
|
433.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240583