The Po River Basin, a central hub for Italy’s economy and ecosystems, is increasingly affected by the impacts of climate change, which are expected to intensify throughout the 21st century. This thesis assesses future climatic and hydrological impacts in the basin using high-resolution simulations (8 km and 2.2 km) derived from the CMCC–COSMO CLMmodeling chain, under two IPCC emission scenarios: RCP 4.5 (moderate) and RCP 8.5 (high), across two time horizons (2041–2070 and 2071–2100). These simulations were used to drive the FEST hydrological model, which was prelimi narily updated to include new irrigation diversions in the basin and validated with a new meteorological dataset (Meteonetwork), in order to correct the model’s summer discharge overestimation and improve the representation of the hydrological regime. The results highlight a marked increase in mean temperatures across all seasons, with summer anomalies being the most pronounced. Heat extremes become more frequent and intense. Annual precipitation shows a slight decreasing trend overall, with summer experiencing the sharpest decline, while late autumn and winter tend to become wetter, especially under RCP 8.5. On the hydrological side, a strong seasonal redistribution of river discharge is observed: increases in winter flows, more stable or slightly declining spring discharges, and significant summer reductions (with drought risks ranging from moderate to extreme). The Snow Water Equivalent (SWE) undergoes a drastic decline, nearly vanishing in summer, leading to an earlier runoff peak and severe reductions in water availability during the most critical months.
Il bacino del fiume Po, nodo centrale per l’economia e gli ecosistemi italiani, è sempre più soggetto agli effetti del cambiamento climatico, destinati ad accentuarsi nel corso del XXI secolo. Questa tesi valuta gli impatti climatici e idrologici futuri nel bacino at traverso simulazioni ad alta risoluzione (8 km e 2.2 km), derivate dalla catena modellistica CMCC–COSMO-CLM, in due scenari di emissione IPCC: RCP 4.5 (moderato) e RCP 8.5 (elevato), su due orizzonti temporali (2041–2070 e 2071–2100). Queste simulazioni sono state usate come input per il modello idrologioco FEST, il quale è stato preliminarmente aggiornato con nuove derivazioni irrigue nel bacino e validato con un nuovo dataset meteorologico(Meteonetwork), allo scopo di migliorare la sovrastima estiva delle portate e quindi la rappresentazione del regime idrologico. I risultati evidenziano un aumento marcato delle temperature medie in tutte le stagioni, con le anomalie estive sempre maggiori. Gli estremi di calore diventano più frequenti e intensi. Le precipitazioni annuuali mostrano una leggera tendenza alla riduzione, l’estate è la stagione dove avviene la riduzione più marcata, mentre il tardo autunno e l’inverno tendono a diventare più umidi, specialmente con RCP 8.5. Sul fronte idrologico, si osserva una marcata ridistribuzione stagionale delle portate fluvi ali: aumenti invernali, primavere più stabili o in lieve calo, e forti riduzioni estive (rischio siccità da moderato a estremo). Lo Snow Water Equivalent (SWE) diminuisce drastica mente, quasi azzerandosi in estate, portando a un’anticipazione del picco di deflusso e a una grave riduzione delle risorse idriche nei mesi più critici.
Assessing climate change impacts on the hydrological regime of the Po river basin coupling climate projections and hydrological modeling
LAMONACA, ANDREA
2024/2025
Abstract
The Po River Basin, a central hub for Italy’s economy and ecosystems, is increasingly affected by the impacts of climate change, which are expected to intensify throughout the 21st century. This thesis assesses future climatic and hydrological impacts in the basin using high-resolution simulations (8 km and 2.2 km) derived from the CMCC–COSMO CLMmodeling chain, under two IPCC emission scenarios: RCP 4.5 (moderate) and RCP 8.5 (high), across two time horizons (2041–2070 and 2071–2100). These simulations were used to drive the FEST hydrological model, which was prelimi narily updated to include new irrigation diversions in the basin and validated with a new meteorological dataset (Meteonetwork), in order to correct the model’s summer discharge overestimation and improve the representation of the hydrological regime. The results highlight a marked increase in mean temperatures across all seasons, with summer anomalies being the most pronounced. Heat extremes become more frequent and intense. Annual precipitation shows a slight decreasing trend overall, with summer experiencing the sharpest decline, while late autumn and winter tend to become wetter, especially under RCP 8.5. On the hydrological side, a strong seasonal redistribution of river discharge is observed: increases in winter flows, more stable or slightly declining spring discharges, and significant summer reductions (with drought risks ranging from moderate to extreme). The Snow Water Equivalent (SWE) undergoes a drastic decline, nearly vanishing in summer, leading to an earlier runoff peak and severe reductions in water availability during the most critical months.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Andrea_Lamonaca.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
74.41 MB
Formato
Adobe PDF
|
74.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240596