This thesis presents a comprehensive study of torsional vibrations in Axial-Flux Per manent Magnet (AFPM) Machines, with a specific focus on Single-Stator Double-Rotor YASA(Yoke-less and Segmented Armature) motor topologies. As these high-performance motors find growing applications in aerospace, automotive, and energy systems, under standing their dynamic behaviour under inverter-induced excitations becomes critical. The research develops a coupled electromechanical model based on a two-mass rotating structure, enabling the identification and characterization of torsional resonance phenomena. This work begins with the electromagnetic modelling of the SSDR-AFPM architecture using Park transformation and integrates a fourth-order mechanical model to analyse the influence of an external torque ripple source on the mechanical state variables. Under suitable assumptions then, the mechanical equations are combined with the electrical ones—projected onto the dqo-frame—to investigate the propagation of vibrations and harmonic interactions. Assuming an evenly distributed electromagnetic torque, as validated through detailed magnetic FEM analysis, a voltage-driven small-signal variation model is developed to capture the mutual interactions between voltage harmonic injection from an open-loop inverter and torsional oscillations between the system’s two masses. An in-depth stability analysis of the electromechanical system around its equilibrium reveals that operating the dual-mass system with an AFPM motor supplied by an open loop inverter—or directly from the grid—leads to instability. Consequently, to enable further analysis in the frequency domain, particularly regarding the response of state variables to inverter-induced voltage harmonics, the implementation of additional control oriented equations is required.
Questa tesi presenta uno studio approfondito delle vibrazioni torsionali nelle macchine a flusso assiale con magneti permanenti (AFPM), con particolare attenzione alle architetture a statore singolo e doppio rotore del tipo YASA (Yoke-less and Segmented Armature). Considerata la crescente diffusione di questi motori ad alte prestazioni nei settori aerospaziale, automotive ed energetico, diventa fondamentale comprenderne il comporta mento dinamico sotto l’influenza di eccitazioni indotte dall’inverter che li alimenta. La ricerca sviluppa un modello elettromeccanico accoppiato basato su una struttura rotante a due masse, consentendo l’identificazione e la caratterizzazione dei fenomeni di risonanza torsionale. Il lavoro prende avvio dalla modellazione elettromagnetica dell’architettura a singolo statore con doppio rotore mediante l’applicazione della trasformata di Park, integrando successivamente un modello meccanico del quarto ordine per analizzare l’influenza di una sorgente esterna di ripple nella coppia sulle variabili meccaniche di stato. Sotto opportune ipotesi, le equazioni meccaniche vengono quindi accoppiate a quelle elettriche—proiettate nel sistema di riferimento rotante dqo—per indagare la propagazione delle vibrazioni e le interazioni armoniche. Assumendo una coppia elettromagnetica distribuita uniformemente, come confermato da un’analisi FEM dettagliata, si sviluppa un modello alle piccole variazioni controllato in tensione, capace di descrivere le interazioni reciproche tra l’iniezione armonica dell’inverter- funzionante in anello aperto- e le oscillazioni torsionali fra le due masse del sistema. Un’analisi approfondita della stabilità del sistema elettromeccanico attorno al punto di equilibrio evidenzia che il funzionamento del motore alimentato da un inverter in anello aperto—o direttamente dalla rete—risulta instabile. Di conseguenza, per consentire ulteriori analisi nel dominio della frequenza, in particolare in relazione alla risposta delle variabili di stato alle armoniche di tensione indotte dall’inverter, è necessaria l’implementazione nel modello elettromeccanico di equazioni orientate al controllo.
Mathematical model of a two-mass multistage axial-flux permanent magnet motor subjected to periodic torsional vibrations
Bestetti, Alessandro
2024/2025
Abstract
This thesis presents a comprehensive study of torsional vibrations in Axial-Flux Per manent Magnet (AFPM) Machines, with a specific focus on Single-Stator Double-Rotor YASA(Yoke-less and Segmented Armature) motor topologies. As these high-performance motors find growing applications in aerospace, automotive, and energy systems, under standing their dynamic behaviour under inverter-induced excitations becomes critical. The research develops a coupled electromechanical model based on a two-mass rotating structure, enabling the identification and characterization of torsional resonance phenomena. This work begins with the electromagnetic modelling of the SSDR-AFPM architecture using Park transformation and integrates a fourth-order mechanical model to analyse the influence of an external torque ripple source on the mechanical state variables. Under suitable assumptions then, the mechanical equations are combined with the electrical ones—projected onto the dqo-frame—to investigate the propagation of vibrations and harmonic interactions. Assuming an evenly distributed electromagnetic torque, as validated through detailed magnetic FEM analysis, a voltage-driven small-signal variation model is developed to capture the mutual interactions between voltage harmonic injection from an open-loop inverter and torsional oscillations between the system’s two masses. An in-depth stability analysis of the electromechanical system around its equilibrium reveals that operating the dual-mass system with an AFPM motor supplied by an open loop inverter—or directly from the grid—leads to instability. Consequently, to enable further analysis in the frequency domain, particularly regarding the response of state variables to inverter-induced voltage harmonics, the implementation of additional control oriented equations is required.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Bestetti.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.5 MB
Formato
Adobe PDF
|
5.5 MB | Adobe PDF | Visualizza/Apri |
2025_07_Bestetti_Executive_Summary.docx
accessibile in internet solo dagli utenti autorizzati
Dimensione
1.07 MB
Formato
Microsoft Word XML
|
1.07 MB | Microsoft Word XML | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240609