The purpose of the thesis is to analyze and characterize the behavior of rubber reciprocating seals in a piston-cylinder hydraulic system. The main objective is to develop a numerical FEM model that reproduces the actual response of the entire system in different operating conditions, evaluating the frictional behaviour and estimating the sealing performance. In this way, the operating conditions can be analyzed and optimized by simulating the system and eventual breakdowns can be foreseen and prevented. A real test-rig of the system was built and many experiments were run, testing different configurations of the most important parameters. The numerical part consisted in recreating a simplified model of the same system in FEA software environment. Also, a study of the parameters characterizing the rubber was conducted, to correctly model the behaviour of the material in the full scale simulations. Those consisted of the seals' fit-in, the application of uniform pressure that simulated the oil one, and finally a sinusoidal movement of the piston. Different type of models of the system were created for different purposes. A simplified 2D model of the assembly was created to assess the CoF (Coefficient of Friction), specific for each testing condition. This consisted of the identification of the static and dynamic CoF for different pairs of seals at varying velocities. In a more complex 3D model of the same system, the presence of the fluid was introduced by using the Coupled Eulerian-Lagrangian (CEL) approach and a method for evaluating leakages was presented. The estimation of such leakages involved the quantification of the fluid's EVF (Eulerian Volume Fraction) passing in correspondence of the inner and outer contact surfaces of the O-rings. The models included simplifications and assumptions necessary to obtain representative but easier simulations. For instance, in both cases the axis-symmetry was exploited to build only a part of the system and save computational costs. Some proposals on possible future studies are given, such as refining friction model, optimizing numerical efficiency, and including defects in the seals in the quantification of the leakages.
Lo scopo della tesi è analizzare e caratterizzare il comportamento di specifiche guarnizioni in gomma in un sistema idraulico pistone-cilindro. L'obiettivo principale è sviluppare un modello numerico a elementi finiti (FEM) che riproduca l'effettivo funzionamento dell'intero sistema in diverse condizioni operative, valutando il comportamento dell'attrito e stimando le prestazioni di tenuta. In questo modo, le condizioni operative possono essere analizzate e ottimizzate simulando il sistema e possibili guasti possono essere previsti. È stato costruito banco prova del sistema e sono stati eseguiti numerosi esperimenti, testando diverse configurazioni dei parametri più importanti. La parte numerica consisteva nel ricreare un modello semplificato dello stesso sistema utilizzando un software per simulazioni ad elementi finiti. Inoltre, è stato condotto uno studio dei parametri che caratterizzano la gomma, in modo da modellare correttamente il comportamento del materiale nelle simulazioni. Queste consistevano in: montaggio delle guarnizioni, applicazione di una pressione uniforme che simulava quella dell'olio e, infine, in un movimento sinusoidale del pistone. Sono stati creati diversi tipi di modelli del sistema per scopi diversi. È stato creato un modello 2D semplificato dell'assieme per valutare il CdA (Coefficiente di Attrito, CoF in inglese), specifico per ciascuna condizione di prova. Questo consisteva nell'identificazione dei CdA statico e dinamico per diverse coppie di guarnizioni a varie velocità. Invece, in un modello 3D più complesso dello stesso sistema, la presenza del fluido è stata introdotta utilizzando l'approccio CEL (Coupled Eulerian-Lagrangian) ed è stato presentato un metodo per la valutazione delle perdite di liquido. La stima di tali trafilamenti prevedeva la quantificazione della frazione di volume euleriano (EVF) che attraversa le superfici di contatto interne ed esterne degli O-ring. I modelli includevano semplificazioni e assunzioni necessarie per ottenere simulazioni rappresentative ma più semplici. Ad esempio, in entrambi i casi la simmetria assiale è stata sfruttata per costruire solo una parte del sistema e limitare i costi computazionali. Sono fornite alcune proposte per studi futuri, come il perfezionamento del modello di attrito, l'ottimizzazione dell'efficienza numerica e l'inclusione di difetti nelle guarnizioni nella quantificazione delle perdite.
Numerical modelling and experimental validation of an hydraulic sealing system
KUZMIN, DMITRY;Mazzoleni, Francesca
2024/2025
Abstract
The purpose of the thesis is to analyze and characterize the behavior of rubber reciprocating seals in a piston-cylinder hydraulic system. The main objective is to develop a numerical FEM model that reproduces the actual response of the entire system in different operating conditions, evaluating the frictional behaviour and estimating the sealing performance. In this way, the operating conditions can be analyzed and optimized by simulating the system and eventual breakdowns can be foreseen and prevented. A real test-rig of the system was built and many experiments were run, testing different configurations of the most important parameters. The numerical part consisted in recreating a simplified model of the same system in FEA software environment. Also, a study of the parameters characterizing the rubber was conducted, to correctly model the behaviour of the material in the full scale simulations. Those consisted of the seals' fit-in, the application of uniform pressure that simulated the oil one, and finally a sinusoidal movement of the piston. Different type of models of the system were created for different purposes. A simplified 2D model of the assembly was created to assess the CoF (Coefficient of Friction), specific for each testing condition. This consisted of the identification of the static and dynamic CoF for different pairs of seals at varying velocities. In a more complex 3D model of the same system, the presence of the fluid was introduced by using the Coupled Eulerian-Lagrangian (CEL) approach and a method for evaluating leakages was presented. The estimation of such leakages involved the quantification of the fluid's EVF (Eulerian Volume Fraction) passing in correspondence of the inner and outer contact surfaces of the O-rings. The models included simplifications and assumptions necessary to obtain representative but easier simulations. For instance, in both cases the axis-symmetry was exploited to build only a part of the system and save computational costs. Some proposals on possible future studies are given, such as refining friction model, optimizing numerical efficiency, and including defects in the seals in the quantification of the leakages.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Kuzmin_Mazzoleni_Tesi_03.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: main text
Dimensione
66.64 MB
Formato
Adobe PDF
|
66.64 MB | Adobe PDF | Visualizza/Apri |
2025_07_Kuzmin_Mazzoleni_Executive_Summary_04.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: executive summary
Dimensione
10.22 MB
Formato
Adobe PDF
|
10.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240624