This thesis further explores and investigates the innovative concept of the Inter-2-Blade (I2B) lead-lag damper arrangement for helicopter rotors. In order to obtain a model comparable to the conventional Inter-Blade (IB) configuration, I2B models are derived by exploiting eigenvalue sensitivity analysis and continuation methods applied to the ground resonance equations. The work first presents a formal derivation of the sensitivity method applied to the ground resonance problem. This methodology is then applied to the so-called Hammond problem, demonstrating its capability to guide modifications of the geometry in the I2B configuration. By adjusting the geometrical characteristics of the damper, the method provides valuable insights to enhance system stability, introduce additional damping in critical modes, and mitigate previously undamped behaviors. Subsequently, a general modeling framework is proposed, capable of assembling the coupled rotor-airframe system independently of the specific damper architecture or kinematic assumptions. Within this framework, two detailed kinematic models are developed: one representative of a modern medium-weight helicopter with the IB configuration, and the other adopting the I2B configuration. By applying the sensitivity-based approach, equivalent models are obtained by tuning the damper stiffness and damping coefficients, yielding an I2B model with improved damping characteristics on collective mode. Finally, the damper configurations studied are implemented in MASST, an industrial-grade tool designed to simulate complex dynamic systems, where a comparison between the obtained results is performed. This work represents a step forward in the study of this novel damper architecture, exploiting eigenvalue sensitivity analysis to derive comparable models for the I2B configuration with respect to the conventional IB configuration, while employing more detailed and realistic kinematic representations.
La presente tesi analizza il concetto innovativo della configurazione Inter-2-Blade (I2B) per gli smorzatori di ritardo nei rotori di elicottero. Al fine di ottenere modelli comparabili con la configurazione convenzionale Inter-Blade (IB), vengono applicati l’analisi di sensibilità degli autovalori e i metodi di continuazione alle equazioni della risonanza al suolo. Viene dapprima presentata la derivazione formale del metodo di sensibilità, applicata successivamente al problema di Hammond, dimostrando la capacità della metodologia di guidare le modifiche geometriche nella configurazione I2B. L’adattamento delle caratteristiche geometriche dello smorzatore consente di migliorare la stabilità del sistema, aumentare lo smorzamento nei modi critici e attenuare comportamenti precedentemente non smorzati. Viene quindi proposto un modello generale per il sistema accoppiato rotore-fusoliera, indipendente dall’architettura dello smorzatore e dalle ipotesi cinematiche adottate. All’in\-terno di tale framework sono sviluppati due modelli dettagliati: uno rappresentativo di un elicottero moderno con configurazione IB e uno con configurazione I2B. Regolando i coefficienti di rigidezza e smorzamento tramite l’approccio di sensibilità, si ottiene un modello I2B con migliorato smorzamento sul modo collettivo. Infine, le configurazioni analizzate sono implementate in MASST, un software industriale per la simulazione di sistemi dinamici complessi, consentendo il confronto tra i risultati. Il lavoro rappresenta un avanzamento nello studio di questa nuova architettura di smorzatori, sfruttando l’analisi di sensibilità degli autovalori per ottenere modelli equivalenti per la configurazione I2B rispetto a quella convenzionale IB, mediante modelli cinematici più dettagliati e realistici.
Ground resonance sensitivity study for unconventional damper configurations
CROCI, MATTEO
2024/2025
Abstract
This thesis further explores and investigates the innovative concept of the Inter-2-Blade (I2B) lead-lag damper arrangement for helicopter rotors. In order to obtain a model comparable to the conventional Inter-Blade (IB) configuration, I2B models are derived by exploiting eigenvalue sensitivity analysis and continuation methods applied to the ground resonance equations. The work first presents a formal derivation of the sensitivity method applied to the ground resonance problem. This methodology is then applied to the so-called Hammond problem, demonstrating its capability to guide modifications of the geometry in the I2B configuration. By adjusting the geometrical characteristics of the damper, the method provides valuable insights to enhance system stability, introduce additional damping in critical modes, and mitigate previously undamped behaviors. Subsequently, a general modeling framework is proposed, capable of assembling the coupled rotor-airframe system independently of the specific damper architecture or kinematic assumptions. Within this framework, two detailed kinematic models are developed: one representative of a modern medium-weight helicopter with the IB configuration, and the other adopting the I2B configuration. By applying the sensitivity-based approach, equivalent models are obtained by tuning the damper stiffness and damping coefficients, yielding an I2B model with improved damping characteristics on collective mode. Finally, the damper configurations studied are implemented in MASST, an industrial-grade tool designed to simulate complex dynamic systems, where a comparison between the obtained results is performed. This work represents a step forward in the study of this novel damper architecture, exploiting eigenvalue sensitivity analysis to derive comparable models for the I2B configuration with respect to the conventional IB configuration, while employing more detailed and realistic kinematic representations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_07_Croci_ExecutiveSummary_02 .pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri |
|
2025_07_Croci_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
12.14 MB
Formato
Adobe PDF
|
12.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240675