This thesis work was carried out in the frame of a research which is analyzing Higgs boson decays in a photon plus missing energy, in the search for (invisible) dark photons with the ATLAS detector at a center-of-mass energy of 13.6 TeV. Previous works have already sought such signatures, both at the Large Hadron Collider but also with other setups (i.e. e+e− colliders or fixed target experiments). Massive dark photons up to now received most of the attention because, coupling directly to the Standard Model, they provide a more easily accessible experimental target than massless dark photons, which are instead addressed by the research context in which this thesis work took place. The ATLAS and CMS Collaborations recently provided results leading to a few percent upper bounds on the branching ratio of the sought process (BR(H → γγd)), exploiting the Vector-Boson Fusion and Higgs-strahlung production channels. This thesis deals with the development of a statistical framework to handle the huge amount of collected data: a simultaneous likelihood fit was built and performed, with the focus of minimizing the impact of statistical and systematic uncertainties, leading to a preliminary expected upper limit on BR(H → γγd) at 95% Confidence Level, compatible with previous results. The analysis was performed exploring, for the first time at ATLAS, the gluon fusion (ggF) channel with a dedicated analysis strategy. Utilized data were collected in 2023 during Run 3 with an integrated luminosity L = 25.6 fb−1. The statistical framework also allowed to project the expected limits at higher luminosity and will work as a basis to repeat the analysis with data taken in 2024 and combine the results with the previous ones.
Questo lavoro di tesi si è svolto nel contesto di una ricerca che si propone di analizzare decadimenti del bosone di Higgs in un fotone ed energia mancante, nella ricerca di fotoni oscuri (invisibili) con il rivelatore ATLAS ad un’energia del centro di massa pari a 13.6 TeV. Precedenti studi hanno già investigato il suddetto segnale, sia presso il Large Hadron Collider ma anche con altri assetti sperimentali (ad esempio collisori e+e− o esperimenti a bersaglio fisso). I fotoni oscuri massivi hanno ricevuto, fino ad ora, la maggior parte dell’attenzione poiché, accoppiandosi direttamente al Modello Standard, rappresentano un obiettivo sperimentale più facilmente raggiungibile rispetto ai fotoni oscuri privi di massa, che sono invece argomento della ricerca nel cui contesto è stata elaborata questa tesi. Le Collaborazioni ATLAS e CMS hanno recentemente fornito risultati che hanno condotto a limiti superiori pari a pochi punti percentuali, sulla branching ratio del processo cercato (BR(H → γγd)), sfruttando i canali di produzione Vector-Boson Fusion e Higgs-strahlung. Questa tesi tratta la costruzione ed esecuzione un fit simultaneo, con particolare attenzione a minimizzare l’impatto delle incertezze statistiche e sistematiche, portando a limiti superiori attesi (preliminari) su BR(H → γγd) con un livello di confidenza del 95%, compatibili con i risultati precedenti. L’analisi è stata condotta sfruttando, per la prima volta in ATLAS, il canale gluon fusion (ggF) con una strategia di analisi dedicata. I dati utilizzati sono stati raccolti nel 2023 durante il Run 3 con luminosità integrata L = 25.6 fb−1. Il framework statistico ha permesso di proiettare i limiti attesi a luminosità più elevate e servirà da base per ripetere l’analisi con i dati raccolti nel 2024 e combinare i risultati con i precedenti.
Statistical techniques in the search for dark photons from Higgs boson decays with the ATLAS detector
Licchelli, Martina
2024/2025
Abstract
This thesis work was carried out in the frame of a research which is analyzing Higgs boson decays in a photon plus missing energy, in the search for (invisible) dark photons with the ATLAS detector at a center-of-mass energy of 13.6 TeV. Previous works have already sought such signatures, both at the Large Hadron Collider but also with other setups (i.e. e+e− colliders or fixed target experiments). Massive dark photons up to now received most of the attention because, coupling directly to the Standard Model, they provide a more easily accessible experimental target than massless dark photons, which are instead addressed by the research context in which this thesis work took place. The ATLAS and CMS Collaborations recently provided results leading to a few percent upper bounds on the branching ratio of the sought process (BR(H → γγd)), exploiting the Vector-Boson Fusion and Higgs-strahlung production channels. This thesis deals with the development of a statistical framework to handle the huge amount of collected data: a simultaneous likelihood fit was built and performed, with the focus of minimizing the impact of statistical and systematic uncertainties, leading to a preliminary expected upper limit on BR(H → γγd) at 95% Confidence Level, compatible with previous results. The analysis was performed exploring, for the first time at ATLAS, the gluon fusion (ggF) channel with a dedicated analysis strategy. Utilized data were collected in 2023 during Run 3 with an integrated luminosity L = 25.6 fb−1. The statistical framework also allowed to project the expected limits at higher luminosity and will work as a basis to repeat the analysis with data taken in 2024 and combine the results with the previous ones.File | Dimensione | Formato | |
---|---|---|---|
2025_07_Licchelli_Executive_Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
2025_07_Licchelli_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
9.27 MB
Formato
Adobe PDF
|
9.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/240679